The use of machine learning (ML) in acoustics has received much attention in the last decade. ML is unique in that it can be applied to all areas of acoustics. ML has transformative potentials as it can extract statistically based new information about events observed in acoustic data. Acoustic data provide scientific and engineering insight ranging from biology and communications to ocean and Earth science. This special issue included 61 papers, illustrating the very diverse applications of ML in acoustics.
References
1.
L. A.
Zadeh
, “Fuzzy logic, neural networks, and soft computing
,” Commun. ACM
37
(3
), 77
–84
(1994
).2.
L.
Zadeh
, “From computing with numbers to computing with words. from manipulation of measurements to manipulation of perceptions
,” IEEE Trans. Circuits Syst. I: Fundamental Theory Appl.
46
(1
), 105
–119
(1999
).3.
M. A.
Roch
, P.
Gerstoft
, B.
Kostek
, and Z.-H.
Michalopoulou
, “How machine learning contributes to solve acoustical problems
,” Acoust. Today
17
(4
) (2021
).4.
M. J.
Bianco
, P.
Gerstoft
, J.
Traer
, E.
Ozanich
, M. A.
Roch
, S.
Gannot
, and C.-A.
Deledalle
, “Machine learning in acoustics: Theory and applications
,” J. Acoust. Soc. Am.
146
(5
), 3590
–3628
(2019
).5.
C.
Frederick
, S.
Villar
, and Z.-H.
Michalopoulou
, “Seabed classification using physics-based modelling and machine learning
,” J. Acoust. Soc. Am.
148
(2
), 859
–872
(2020
).6.
C.
Smaragdakis
and M. I.
Taroudakis
, “Acoustic signal characterisation based on hidden Markov models with applications to geoacoustic inversions
,” J. Acoust. Soc. Am.
148
(4
), 2337
–2350
(2020
).7.
Y.
Shen
, X.
Pan
, Z.
Zheng
, and P.
Gerstoft
, “Matched-field geoacoustic inversion based on radial basis function neural network
,” J. Acoust. Soc. Am.
148
(5
), 3279
–3290
(2020
).8.
Y.
Liu
, H.
Niu
, and Z.
Li
, “A multi-task learning convolutional neural network for source localisation in deep ocean
,” J. Acoust. Soc. Am.
148
(2
), 873
–883
(2020
).9.
R.
Chen
and H.
Schmidt
, “Model-based convolutional neural network approach to underwater source-range estimation
,” J. Acoust. Soc. Am.
149
(1
), 405
–420
(2021
).10.
E. L.
Ferguson
, “Multitask convolutional neural network for acoustic localisation of a transiting broadband source using a hydrophone array
,” J. Acoust. Soc. Am.
150
(1
), 248
–256
(2021
).11.
W.
Wang
, Z.
Wang
, L.
Su
, T.
Hu
, Q.
Ren
, P.
Gerstoft
, and L.
Ma
, “Source depth estimation using spectral transformations and convolutional neural network in a deep-sea environment
,” J. Acoust. Soc. Am.
148
(6
), 3633
–3644
(2020
).12.
T. B.
Neilsen
, C. D.
Escobar-Amado
, M. C.
Acree
, W. S.
Hodgkiss
, D. F.
Van Komen
, D. P.
Knobles
, M.
Badiey
, and J.
Castro-Correa
, “Learning location and seabed type from a moving mid-frequency source
,” J. Acoust. Soc. Am.
149
(1
), 692
–705
(2021
).13.
D. F.
Van Komen
, T. B.
Neilsen
, D. B.
Mortenson
, M. C.
Acree
, D. P.
Knobles
, M.
Badiey
, and W. S.
Hodgkiss
, “Seabed type and source parameters predictions using ship spectrograms in convolutional neural networks
,” J. Acoust. Soc. Am.
149
(2
), 1198
–1210
(2021
).14.
S.
Yoon
, H.
Yang
, and W.
Seong
, “Deep learning-based high-frequency source depth estimation using a single sensor
,” J. Acoust. Soc. Am.
149
(3
), 1454
–1465
(2021
).15.
H.
Cao
, W.
Wang
, L.
Su
, H.
Ni
, P.
Gerstoft
, Q.
Ren
, and L.
Ma
, “Deep transfer learning for underwater direction of arrival using one vector sensor
,” J. Acoust. Soc. Am.
149
(3
), 1699
–1711
(2021
).16.
S.
Whitaker
, A.
Barnard
, G. D.
Anderson
, and T. C.
Havens
, “Recurrent networks for direction-of-arrival identification of an acoustic source in a shallow water channel using a vector sensor
,” J. Acoust. Soc. Am.
150
(1
), 111
–119
(2021
).17.
T. S.
Brandes
, B.
Ballard
, S.
Ramakrishnan
, E.
Lockhart
, B.
Marchand
, and P.
Rabenold
, “Environmentally adaptive automated recognition of underwater mines with synthetic aperture sonar imagery
,” J. Acoust. Soc. Am.
150
(2
), 851
–863
(2021
).18.
R. A.
McCarthy
, A. S.
Gupta
, and M.
Kemerling
, “Autonomous learning and interpretation of channel multipath scattering using braid manifolds in underwater acoustic communications
,” J. Acoust. Soc. Am.
150
(2
), 906
–919
(2021
).19.
Y.
Zhang
, H.
Wang
, C.
Li
, D.
Chen
, and F.
Meriaudeau
, “Meta-learning-aided orthogonal frequency division multiplexing for underwater acoustic communications
,” J. Acoust. Soc. Am.
149
(6
), 4596
–4606
(2021
).20.
W.-J.
Lee
and V.
Staneva
, “Compact representation of temporal processes in echosounder time series via matrix decomposition
,” J. Acoust. Soc. Am.
148
(6
), 3429
–3442
(2020
).21.
E.
Ozanich
, A.
Thode
, P.
Gerstoft
, L. A.
Freeman
, and S.
Freeman
, “Deep embedded clustering of coral reef bioacoustics
,” J. Acoust. Soc. Am.
149
(4
), 2587
–2601
(2021
).22.
E.
Cotter
, C.
Bassett
, and A.
Lavery
, “Classification of broadband target spectra in the mesopelagic using physics-informed machine learning
,” J. Acoust. Soc. Am.
149
(6
), 3889
–3901
(2021
).23.
P.
Gruden
and P. R.
White
, “Automated extraction of dolphin whistles—a sequential Monte Carlo probability hypothesis density approach
,” J. Acoust. Soc. Am.
148
(5
), 3014
–3026
(2020
).24.
P.
Gruden
, E.-M.
Nosal
, and E.
Oleson
, “Tracking time differences of arrivals of multiple sound sources in the presence of clutter and missed detections
,” J. Acoust. Soc. Am.
150
, 3399
(2021
).25.
J. H.
Rasmussen
and A.
Širović
, “Automatic detection and classification of baleen whale social calls using convolutional neural networks
,” J. Acoust. Soc. Am.
149
(5
), 3635
–3644
(2021
).26.
B.
Padovese
, F.
Frazao
, O. S.
Kirsebom
, and S.
Matwin
, “Data augmentation for the classification of north atlantic right whales upcalls
,” J. Acoust. Soc. Am.
149
(4
), 2520
–2530
(2021
).27.
W.
Vickers
, B.
Milner
, D.
Risch
, and R.
Lee
, “Robust north atlantic right whale detection using deep learning models for denoising
,” J. Acoust. Soc. Am.
149
(6
), 3797
–3812
(2021
).28.
E.
Schall
, I.
Roca
, and I.
Van Opzeeland
, “Acoustic metrics to assess humpback whale song unit structure from the Atlantic sector of the Southern ocean
,” J. Acoust. Soc. Am.
149
(6
), 4649
–4658
(2021
).29.
M. A.
Roch
, S.
Lindeneau
, G. S.
Aurora
, K. E.
Frasier
, J. A.
Hildebrand
, H.
Glotin
, and S.
Baumann-Pickering
, “Using context to train time-domain echolocation click detectors
,” J. Acoust. Soc. Am.
149
(5
), 3301
–3310
(2021
).30.
M.
Zhong
, M.
Torterotot
, T. A.
Branch
, K. M.
Stafford
, J.-Y.
Royer
, R.
Dodhia
, and J. L.
Ferres
, “Detecting, classifying, and counting blue whale calls with siamese neural networks
,” J. Acoust. Soc. Am.
149
(5
), 3086
–3094
(2021
).31.
V.
Morfi
, R. F.
Lachlan
, and D.
Stowell
, “Deep perceptual embeddings for unlabelled animal sound events
,” J. Acoust. Soc. Am.
150
(1
), 2
–11
(2021
).32.
R.
Kuc
, “Artificial neural network classification of foliage targets from spectrograms of sequential echoes using a biomimetic audible sonar
,” J. Acoust. Soc. Am.
148
(5
), 3270
–3278
(2020
).33.
G.
Ciaburro
and G.
Iannace
, “Modelling acoustic metamaterials based on reused buttons using data fitting with neural network
,” J. Acoust. Soc. Am.
150
(1
), 51
–63
(2021
).34.
C.
Gurbuz
, F.
Kronowetter
, C.
Dietz
, M.
Eser
, J.
Schmid
, and S.
Marburg
, “Generative adversarial networks for the design of acoustic metamaterials
,” J. Acoust. Soc. Am.
149
(2
), 1162
–1174
(2021
).35.
T.
Shah
, L.
Zhuo
, P.
Lai
, A.
De La Rosa-Moreno
, F.
Amirkulova
, and P.
Gerstoft
, “Reinforcement learning applied to metamaterial design
,” J. Acoust. Soc. Am.
150
(1
), 321
–338
(2021
).36.
M.
Stender
, C.
Adams
, M.
Wedler
, A.
Grebel
, and N.
Hoffmann
, “Explainable machine learning determines effects on the sound absorption coefficient measured in the impedance tube
,” J. Acoust. Soc. Am.
149
(3
), 1932
–1945
(2021
).37.
N.
Shankar
, G. S.
Bhat
, and I. M. S.
Panahi
, “Efficient two-microphone speech enhancement using basic recurrent neural network cell for hearing and hearing aids
,” J. Acoust. Soc. Am.
148
(1
), 389
–400
(2020
).38.
M.
Chinen
, J.
Skoglund
, and A.
Hines
, “Speech quality estimation with deep lattice networks
,” J. Acoust. Soc. Am.
149
(6
), 3851
–3861
(2021
).39.
M. M.
Morgan
, I.
Bhattacharya
, R. J.
Radke
, and J.
Braasch
, “Classifying the emotional speech content of participants in group meetings using convolutional long short-term memory network
,” J. Acoust. Soc. Am.
149
(2
), 885
–894
(2021
).40.
S.
Liu
, M.
Zhang
, M.
Fang
, J.
Zhao
, K.
Hou
, and C.-C.
Hung
, “Speech emotion recognition based on transfer learning from the FaceNet framework
,” J. Acoust. Soc. Am.
149
(2
), 1338
–1345
(2021
).41.
M. S.
Mahmud
, M.
Yeasin
, and G. M.
Bidelman
, “Speech categorisation is better described by induced rather than evoked neural activity
,” J. Acoust. Soc. Am.
149
(3
), 1644
–1656
(2021
).42.
M.
Zhang
, X.
Pan
, Y.
Shen
, and J.
Qiu
, “Deep learning-based direction-of-arrival estimation for multiple speech sources using a small scale array
,” J. Acoust. Soc. Am.
149
(6
), 3841
–3850
(2021
).43.
R.
Riad
, J.
Karadayi
, A.-C.
Bachoud-Lévi
, and E.
Dupoux
, “Learning spectro-temporal representations of complex sounds with parameterised neural networks
,” J. Acoust. Soc. Am.
150
(1
), 353
–366
(2021
).44.
M.
Piotrowska
, A.
Czyżewski
, T.
Ciszewski
, G.
Korvel
, A.
Kurowski
, and B.
Kostek
, “Evaluation of aspiration problems in L2 english pronunciation employing machine learning
,” J. Acoust. Soc. Am.
150
(1
), 120
–132
(2021
).45.
G.
Korvel
, P.
Treigys
, and B.
Kostek
, “Highlighting interlanguage phoneme differences based on similarity matrices and convolutional neural network
,” J. Acoust. Soc. Am.
149
(1
), 508
–523
(2021
).46.
N.
Ulrich
, M.
Allassonnière-Tang
, F.
Pellegrino
, and D.
Dediu
, “Identifying the Russian voiceless non-palatalized fricatives /f/, /s/, and / / from acoustic cues using machine learning
,” J. Acoust. Soc. Am.
150
(3
), 1806
–1820
(2021
).47.
N.
Tsipas
, L.
Vrysis
, K.
Konstantoudakis
, and C.
Dimoulas
, “Semi-supervised audio-driven TV-news speaker diarization using deep neural embeddings
,” J. Acoust. Soc. Am.
148
(6
), 3751
–3761
(2020
).48.
C. J.
Smalt
, G. A.
Ciccarelli
, A. R.
Rodriguez
, and W. J.
Murphy
, “A deep neural-network classifier for photograph-based estimation of hearing protection attenuation and fit
,” J. Acoust. Soc. Am.
150
(2
), 1067
–1075
(2021
).49.
M. S.
Alavijeh
, R.
Scott
, F.
Seviaryn
, and R. G.
Maev
, “Using machine learning to automate ultrasound-based classification of butt-fused joints in medium-density polyethylene gas pipes
,” J. Acoust. Soc. Am.
150
(1
), 561
–572
(2021
).50.
A.
Abeysinghe
, M.
Fard
, R.
Jazar
, F.
Zambetta
, and J.
Davy
, “Mel frequency cepstral coefficient temporal feature integration for classifying squeak and rattle noise
,” J. Acoust. Soc. Am.
150
(1
), 193
–201
(2021
).51.
G. S.
Teja
, C. S. V.
Prasad
, B.
Venkatesham
, and K. S. R.
Murty
, “Identification of sloshing noises using convolutional neural network
,” J. Acoust. Soc. Am.
149
(5
), 3027
–3041
(2021
).52.
Y.
Mei
, H.
Jin
, B.
Yu
, E.
Wu
, and K.
Yang
, “Visual geometry group-unet: Deep learning ultrasonic image reconstruction for curved parts
,” J. Acoust. Soc. Am.
149
(5
), 2997
–3009
(2021
).53.
N.
Liu
, H.
Chen
, K.
Songgong
, and Y.
Li
, “Deep learning assisted sound source localisation using two orthogonal first-order differential microphone arrays
,” J. Acoust. Soc. Am.
149
(2
), 1069
–1084
(2021
).54.
C.
Foy
, A.
Deleforge
, and D. D.
Carlo
, “Mean absorption estimation from room impulse responses using virtually supervised learning
,” J. Acoust. Soc. Am.
150
(2
), 1286
–1299
(2021
).55.
E.
Shalev
, I.
Cohen
, and D.
Lvov
, “Indoors audio classification with structure image method for simulating multi-room acoustics
,” J. Acoust. Soc. Am.
(in press).56.
J. T.
Colonel
and J.
Reiss
, “Reverse engineering of a recording mix with differentiable digital signal processing
,” J. Acoust. Soc. Am.
150
(1
), 608
–619
(2021
).57.
H.
Pujol
, É.
Bavu
, and A.
Garcia
, “BeamLearning: An end-to-end deep learning approach for the angular localisation of sound sources using raw multichannel acoustic pressure data
,” J. Acoust. Soc. Am.
149
(6
), 4248
–4263
(2021
).58.
D.
De Salvio
, D.
D'Oraziob
, and M.
Garai
, “Unsupervised analysis of background noise sources in active offices
,” J. Acoust. Soc. Am.
149
(6
), 4049
–4060
(2021
).59.
D.
Ernst Tsokaktsidis
, C.
Nau
, M.
Maeder
, and S.
Marburg
, “Using rectified linear unit and swish based artificial neural networks to describe noise transfer in a full vehicle context
,” J. Acoust. Soc. Am.
150
(3
), 2088
–2105
(2021
).60.
S. H.
Hawley
and A. C.
Morrison
, “Convnets for counting: Object detection of transient phenomena in steelpan drums
,” J. Acoust. Soc. Am.
(to be published).61.
C. R.
Hart
, D. K.
Wilson
, C. L.
Pettit
, and E. T.
Nykaza
, “Machine-learning of long-range sound propagation through simulated atmospheric turbulence
,” J. Acoust. Soc. Am.
149
(6
), 4384
–4395
(2021
).62.
F.
Gontier
, V.
Lostanlen
, M.
Lagrange
, N.
Fortin
, C.
Lavandier
, and J.-F.
Petiot
, “Polyphonic training set synthesis improves self-supervised urban sound classification
,” J. Acoust. Soc. Am.
149
(6
), 4309
–4326
(2021
).63.
H.
Chen
, Z.
Liu
, Z.
Liu
, and P.
Zhang
, “Long–term scalogram integrated with an iterative data augmentation scheme for acoustic scene classification
,” J. Acoust. Soc. Am.
149
(6
), 4198
–4213
(2021
).64.
A.
Goudarzi
, C.
Spehr
, and S.
Herbold
, “Automatic source localisation and spectra generation from sparse beamforming maps
,” J. Acoust. Soc. Am.
150
(3
), 1866
–1882
(2021
).65.
J.-R.
Gloaguen
, D.
Ecotière
, B.
Gauvreau
, A.
Finez
, A.
Petit
, and C.
Lebourdat
, “Automatic estimation of the sound emergence of wind turbine noise with non-negative matrix factorisation
,” J. Acoust. Soc. Am.
(to be published).66.
A. O.
Ekpezu
, I.
Wiafe
, F.
Katsriku
, and W.
Yaokumah
, “Using deep learning for acoustic event classification: The case of natural disasters
,” J. Acoust. Soc. Am.
149
(4
), 2926
–2935
(2021
).67.
V. S.
Paul
and P. A.
Nelson
, “Matrix analysis for fast learning of neural networks with application to the classification of acoustic spectra
,” J. Acoust. Soc. Am.
149
(6
), 4119
–4133
(2021
).68.
J.
Shao
, J.
Zheng
, and B.
Zhang
, “Deep convolutional neural networks for thyroid tumour grading using ultrasound b-mode images
,” J. Acoust. Soc. Am.
148
(3
), 1529
–1535
(2020
).© 2021 Acoustical Society of America.
2021
Acoustical Society of America
You do not currently have access to this content.