The use of machine learning (ML) in acoustics has received much attention in the last decade. ML is unique in that it can be applied to all areas of acoustics. ML has transformative potentials as it can extract statistically based new information about events observed in acoustic data. Acoustic data provide scientific and engineering insight ranging from biology and communications to ocean and Earth science. This special issue included 61 papers, illustrating the very diverse applications of ML in acoustics.

1.
L. A.
Zadeh
, “
Fuzzy logic, neural networks, and soft computing
,”
Commun. ACM
37
(
3
),
77
84
(
1994
).
2.
L.
Zadeh
, “
From computing with numbers to computing with words. from manipulation of measurements to manipulation of perceptions
,”
IEEE Trans. Circuits Syst. I: Fundamental Theory Appl.
46
(
1
),
105
119
(
1999
).
3.
M. A.
Roch
,
P.
Gerstoft
,
B.
Kostek
, and
Z.-H.
Michalopoulou
, “
How machine learning contributes to solve acoustical problems
,”
Acoust. Today
17
(
4
) (
2021
).
4.
M. J.
Bianco
,
P.
Gerstoft
,
J.
Traer
,
E.
Ozanich
,
M. A.
Roch
,
S.
Gannot
, and
C.-A.
Deledalle
, “
Machine learning in acoustics: Theory and applications
,”
J. Acoust. Soc. Am.
146
(
5
),
3590
3628
(
2019
).
5.
C.
Frederick
,
S.
Villar
, and
Z.-H.
Michalopoulou
, “
Seabed classification using physics-based modelling and machine learning
,”
J. Acoust. Soc. Am.
148
(
2
),
859
872
(
2020
).
6.
C.
Smaragdakis
and
M. I.
Taroudakis
, “
Acoustic signal characterisation based on hidden Markov models with applications to geoacoustic inversions
,”
J. Acoust. Soc. Am.
148
(
4
),
2337
2350
(
2020
).
7.
Y.
Shen
,
X.
Pan
,
Z.
Zheng
, and
P.
Gerstoft
, “
Matched-field geoacoustic inversion based on radial basis function neural network
,”
J. Acoust. Soc. Am.
148
(
5
),
3279
3290
(
2020
).
8.
Y.
Liu
,
H.
Niu
, and
Z.
Li
, “
A multi-task learning convolutional neural network for source localisation in deep ocean
,”
J. Acoust. Soc. Am.
148
(
2
),
873
883
(
2020
).
9.
R.
Chen
and
H.
Schmidt
, “
Model-based convolutional neural network approach to underwater source-range estimation
,”
J. Acoust. Soc. Am.
149
(
1
),
405
420
(
2021
).
10.
E. L.
Ferguson
, “
Multitask convolutional neural network for acoustic localisation of a transiting broadband source using a hydrophone array
,”
J. Acoust. Soc. Am.
150
(
1
),
248
256
(
2021
).
11.
W.
Wang
,
Z.
Wang
,
L.
Su
,
T.
Hu
,
Q.
Ren
,
P.
Gerstoft
, and
L.
Ma
, “
Source depth estimation using spectral transformations and convolutional neural network in a deep-sea environment
,”
J. Acoust. Soc. Am.
148
(
6
),
3633
3644
(
2020
).
12.
T. B.
Neilsen
,
C. D.
Escobar-Amado
,
M. C.
Acree
,
W. S.
Hodgkiss
,
D. F.
Van Komen
,
D. P.
Knobles
,
M.
Badiey
, and
J.
Castro-Correa
, “
Learning location and seabed type from a moving mid-frequency source
,”
J. Acoust. Soc. Am.
149
(
1
),
692
705
(
2021
).
13.
D. F.
Van Komen
,
T. B.
Neilsen
,
D. B.
Mortenson
,
M. C.
Acree
,
D. P.
Knobles
,
M.
Badiey
, and
W. S.
Hodgkiss
, “
Seabed type and source parameters predictions using ship spectrograms in convolutional neural networks
,”
J. Acoust. Soc. Am.
149
(
2
),
1198
1210
(
2021
).
14.
S.
Yoon
,
H.
Yang
, and
W.
Seong
, “
Deep learning-based high-frequency source depth estimation using a single sensor
,”
J. Acoust. Soc. Am.
149
(
3
),
1454
1465
(
2021
).
15.
H.
Cao
,
W.
Wang
,
L.
Su
,
H.
Ni
,
P.
Gerstoft
,
Q.
Ren
, and
L.
Ma
, “
Deep transfer learning for underwater direction of arrival using one vector sensor
,”
J. Acoust. Soc. Am.
149
(
3
),
1699
1711
(
2021
).
16.
S.
Whitaker
,
A.
Barnard
,
G. D.
Anderson
, and
T. C.
Havens
, “
Recurrent networks for direction-of-arrival identification of an acoustic source in a shallow water channel using a vector sensor
,”
J. Acoust. Soc. Am.
150
(
1
),
111
119
(
2021
).
17.
T. S.
Brandes
,
B.
Ballard
,
S.
Ramakrishnan
,
E.
Lockhart
,
B.
Marchand
, and
P.
Rabenold
, “
Environmentally adaptive automated recognition of underwater mines with synthetic aperture sonar imagery
,”
J. Acoust. Soc. Am.
150
(
2
),
851
863
(
2021
).
18.
R. A.
McCarthy
,
A. S.
Gupta
, and
M.
Kemerling
, “
Autonomous learning and interpretation of channel multipath scattering using braid manifolds in underwater acoustic communications
,”
J. Acoust. Soc. Am.
150
(
2
),
906
919
(
2021
).
19.
Y.
Zhang
,
H.
Wang
,
C.
Li
,
D.
Chen
, and
F.
Meriaudeau
, “
Meta-learning-aided orthogonal frequency division multiplexing for underwater acoustic communications
,”
J. Acoust. Soc. Am.
149
(
6
),
4596
4606
(
2021
).
20.
W.-J.
Lee
and
V.
Staneva
, “
Compact representation of temporal processes in echosounder time series via matrix decomposition
,”
J. Acoust. Soc. Am.
148
(
6
),
3429
3442
(
2020
).
21.
E.
Ozanich
,
A.
Thode
,
P.
Gerstoft
,
L. A.
Freeman
, and
S.
Freeman
, “
Deep embedded clustering of coral reef bioacoustics
,”
J. Acoust. Soc. Am.
149
(
4
),
2587
2601
(
2021
).
22.
E.
Cotter
,
C.
Bassett
, and
A.
Lavery
, “
Classification of broadband target spectra in the mesopelagic using physics-informed machine learning
,”
J. Acoust. Soc. Am.
149
(
6
),
3889
3901
(
2021
).
23.
P.
Gruden
and
P. R.
White
, “
Automated extraction of dolphin whistles—a sequential Monte Carlo probability hypothesis density approach
,”
J. Acoust. Soc. Am.
148
(
5
),
3014
3026
(
2020
).
24.
P.
Gruden
,
E.-M.
Nosal
, and
E.
Oleson
, “
Tracking time differences of arrivals of multiple sound sources in the presence of clutter and missed detections
,”
J. Acoust. Soc. Am.
150
,
3399
(
2021
).
25.
J. H.
Rasmussen
and
A.
Širović
, “
Automatic detection and classification of baleen whale social calls using convolutional neural networks
,”
J. Acoust. Soc. Am.
149
(
5
),
3635
3644
(
2021
).
26.
B.
Padovese
,
F.
Frazao
,
O. S.
Kirsebom
, and
S.
Matwin
, “
Data augmentation for the classification of north atlantic right whales upcalls
,”
J. Acoust. Soc. Am.
149
(
4
),
2520
2530
(
2021
).
27.
W.
Vickers
,
B.
Milner
,
D.
Risch
, and
R.
Lee
, “
Robust north atlantic right whale detection using deep learning models for denoising
,”
J. Acoust. Soc. Am.
149
(
6
),
3797
3812
(
2021
).
28.
E.
Schall
,
I.
Roca
, and
I.
Van Opzeeland
, “
Acoustic metrics to assess humpback whale song unit structure from the Atlantic sector of the Southern ocean
,”
J. Acoust. Soc. Am.
149
(
6
),
4649
4658
(
2021
).
29.
M. A.
Roch
,
S.
Lindeneau
,
G. S.
Aurora
,
K. E.
Frasier
,
J. A.
Hildebrand
,
H.
Glotin
, and
S.
Baumann-Pickering
, “
Using context to train time-domain echolocation click detectors
,”
J. Acoust. Soc. Am.
149
(
5
),
3301
3310
(
2021
).
30.
M.
Zhong
,
M.
Torterotot
,
T. A.
Branch
,
K. M.
Stafford
,
J.-Y.
Royer
,
R.
Dodhia
, and
J. L.
Ferres
, “
Detecting, classifying, and counting blue whale calls with siamese neural networks
,”
J. Acoust. Soc. Am.
149
(
5
),
3086
3094
(
2021
).
31.
V.
Morfi
,
R. F.
Lachlan
, and
D.
Stowell
, “
Deep perceptual embeddings for unlabelled animal sound events
,”
J. Acoust. Soc. Am.
150
(
1
),
2
11
(
2021
).
32.
R.
Kuc
, “
Artificial neural network classification of foliage targets from spectrograms of sequential echoes using a biomimetic audible sonar
,”
J. Acoust. Soc. Am.
148
(
5
),
3270
3278
(
2020
).
33.
G.
Ciaburro
and
G.
Iannace
, “
Modelling acoustic metamaterials based on reused buttons using data fitting with neural network
,”
J. Acoust. Soc. Am.
150
(
1
),
51
63
(
2021
).
34.
C.
Gurbuz
,
F.
Kronowetter
,
C.
Dietz
,
M.
Eser
,
J.
Schmid
, and
S.
Marburg
, “
Generative adversarial networks for the design of acoustic metamaterials
,”
J. Acoust. Soc. Am.
149
(
2
),
1162
1174
(
2021
).
35.
T.
Shah
,
L.
Zhuo
,
P.
Lai
,
A.
De La Rosa-Moreno
,
F.
Amirkulova
, and
P.
Gerstoft
, “
Reinforcement learning applied to metamaterial design
,”
J. Acoust. Soc. Am.
150
(
1
),
321
338
(
2021
).
36.
M.
Stender
,
C.
Adams
,
M.
Wedler
,
A.
Grebel
, and
N.
Hoffmann
, “
Explainable machine learning determines effects on the sound absorption coefficient measured in the impedance tube
,”
J. Acoust. Soc. Am.
149
(
3
),
1932
1945
(
2021
).
37.
N.
Shankar
,
G. S.
Bhat
, and
I. M. S.
Panahi
, “
Efficient two-microphone speech enhancement using basic recurrent neural network cell for hearing and hearing aids
,”
J. Acoust. Soc. Am.
148
(
1
),
389
400
(
2020
).
38.
M.
Chinen
,
J.
Skoglund
, and
A.
Hines
, “
Speech quality estimation with deep lattice networks
,”
J. Acoust. Soc. Am.
149
(
6
),
3851
3861
(
2021
).
39.
M. M.
Morgan
,
I.
Bhattacharya
,
R. J.
Radke
, and
J.
Braasch
, “
Classifying the emotional speech content of participants in group meetings using convolutional long short-term memory network
,”
J. Acoust. Soc. Am.
149
(
2
),
885
894
(
2021
).
40.
S.
Liu
,
M.
Zhang
,
M.
Fang
,
J.
Zhao
,
K.
Hou
, and
C.-C.
Hung
, “
Speech emotion recognition based on transfer learning from the FaceNet framework
,”
J. Acoust. Soc. Am.
149
(
2
),
1338
1345
(
2021
).
41.
M. S.
Mahmud
,
M.
Yeasin
, and
G. M.
Bidelman
, “
Speech categorisation is better described by induced rather than evoked neural activity
,”
J. Acoust. Soc. Am.
149
(
3
),
1644
1656
(
2021
).
42.
M.
Zhang
,
X.
Pan
,
Y.
Shen
, and
J.
Qiu
, “
Deep learning-based direction-of-arrival estimation for multiple speech sources using a small scale array
,”
J. Acoust. Soc. Am.
149
(
6
),
3841
3850
(
2021
).
43.
R.
Riad
,
J.
Karadayi
,
A.-C.
Bachoud-Lévi
, and
E.
Dupoux
, “
Learning spectro-temporal representations of complex sounds with parameterised neural networks
,”
J. Acoust. Soc. Am.
150
(
1
),
353
366
(
2021
).
44.
M.
Piotrowska
,
A.
Czyżewski
,
T.
Ciszewski
,
G.
Korvel
,
A.
Kurowski
, and
B.
Kostek
, “
Evaluation of aspiration problems in L2 english pronunciation employing machine learning
,”
J. Acoust. Soc. Am.
150
(
1
),
120
132
(
2021
).
45.
G.
Korvel
,
P.
Treigys
, and
B.
Kostek
, “
Highlighting interlanguage phoneme differences based on similarity matrices and convolutional neural network
,”
J. Acoust. Soc. Am.
149
(
1
),
508
523
(
2021
).
46.
N.
Ulrich
,
M.
Allassonnière-Tang
,
F.
Pellegrino
, and
D.
Dediu
, “
Identifying the Russian voiceless non-palatalized fricatives /f/, /s/, and / / from acoustic cues using machine learning
,”
J. Acoust. Soc. Am.
150
(
3
),
1806
1820
(
2021
).
47.
N.
Tsipas
,
L.
Vrysis
,
K.
Konstantoudakis
, and
C.
Dimoulas
, “
Semi-supervised audio-driven TV-news speaker diarization using deep neural embeddings
,”
J. Acoust. Soc. Am.
148
(
6
),
3751
3761
(
2020
).
48.
C. J.
Smalt
,
G. A.
Ciccarelli
,
A. R.
Rodriguez
, and
W. J.
Murphy
, “
A deep neural-network classifier for photograph-based estimation of hearing protection attenuation and fit
,”
J. Acoust. Soc. Am.
150
(
2
),
1067
1075
(
2021
).
49.
M. S.
Alavijeh
,
R.
Scott
,
F.
Seviaryn
, and
R. G.
Maev
, “
Using machine learning to automate ultrasound-based classification of butt-fused joints in medium-density polyethylene gas pipes
,”
J. Acoust. Soc. Am.
150
(
1
),
561
572
(
2021
).
50.
A.
Abeysinghe
,
M.
Fard
,
R.
Jazar
,
F.
Zambetta
, and
J.
Davy
, “
Mel frequency cepstral coefficient temporal feature integration for classifying squeak and rattle noise
,”
J. Acoust. Soc. Am.
150
(
1
),
193
201
(
2021
).
51.
G. S.
Teja
,
C. S. V.
Prasad
,
B.
Venkatesham
, and
K. S. R.
Murty
, “
Identification of sloshing noises using convolutional neural network
,”
J. Acoust. Soc. Am.
149
(
5
),
3027
3041
(
2021
).
52.
Y.
Mei
,
H.
Jin
,
B.
Yu
,
E.
Wu
, and
K.
Yang
, “
Visual geometry group-unet: Deep learning ultrasonic image reconstruction for curved parts
,”
J. Acoust. Soc. Am.
149
(
5
),
2997
3009
(
2021
).
53.
N.
Liu
,
H.
Chen
,
K.
Songgong
, and
Y.
Li
, “
Deep learning assisted sound source localisation using two orthogonal first-order differential microphone arrays
,”
J. Acoust. Soc. Am.
149
(
2
),
1069
1084
(
2021
).
54.
C.
Foy
,
A.
Deleforge
, and
D. D.
Carlo
, “
Mean absorption estimation from room impulse responses using virtually supervised learning
,”
J. Acoust. Soc. Am.
150
(
2
),
1286
1299
(
2021
).
55.
E.
Shalev
,
I.
Cohen
, and
D.
Lvov
, “
Indoors audio classification with structure image method for simulating multi-room acoustics
,”
J. Acoust. Soc. Am.
(in press).
56.
J. T.
Colonel
and
J.
Reiss
, “
Reverse engineering of a recording mix with differentiable digital signal processing
,”
J. Acoust. Soc. Am.
150
(
1
),
608
619
(
2021
).
57.
H.
Pujol
,
É.
Bavu
, and
A.
Garcia
, “
BeamLearning: An end-to-end deep learning approach for the angular localisation of sound sources using raw multichannel acoustic pressure data
,”
J. Acoust. Soc. Am.
149
(
6
),
4248
4263
(
2021
).
58.
D.
De Salvio
,
D.
D'Oraziob
, and
M.
Garai
, “
Unsupervised analysis of background noise sources in active offices
,”
J. Acoust. Soc. Am.
149
(
6
),
4049
4060
(
2021
).
59.
D.
Ernst Tsokaktsidis
,
C.
Nau
,
M.
Maeder
, and
S.
Marburg
, “
Using rectified linear unit and swish based artificial neural networks to describe noise transfer in a full vehicle context
,”
J. Acoust. Soc. Am.
150
(
3
),
2088
2105
(
2021
).
60.
S. H.
Hawley
and
A. C.
Morrison
, “
Convnets for counting: Object detection of transient phenomena in steelpan drums
,”
J. Acoust. Soc. Am.
(to be published).
61.
C. R.
Hart
,
D. K.
Wilson
,
C. L.
Pettit
, and
E. T.
Nykaza
, “
Machine-learning of long-range sound propagation through simulated atmospheric turbulence
,”
J. Acoust. Soc. Am.
149
(
6
),
4384
4395
(
2021
).
62.
F.
Gontier
,
V.
Lostanlen
,
M.
Lagrange
,
N.
Fortin
,
C.
Lavandier
, and
J.-F.
Petiot
, “
Polyphonic training set synthesis improves self-supervised urban sound classification
,”
J. Acoust. Soc. Am.
149
(
6
),
4309
4326
(
2021
).
63.
H.
Chen
,
Z.
Liu
,
Z.
Liu
, and
P.
Zhang
, “
Long–term scalogram integrated with an iterative data augmentation scheme for acoustic scene classification
,”
J. Acoust. Soc. Am.
149
(
6
),
4198
4213
(
2021
).
64.
A.
Goudarzi
,
C.
Spehr
, and
S.
Herbold
, “
Automatic source localisation and spectra generation from sparse beamforming maps
,”
J. Acoust. Soc. Am.
150
(
3
),
1866
1882
(
2021
).
65.
J.-R.
Gloaguen
,
D.
Ecotière
,
B.
Gauvreau
,
A.
Finez
,
A.
Petit
, and
C.
Lebourdat
, “
Automatic estimation of the sound emergence of wind turbine noise with non-negative matrix factorisation
,”
J. Acoust. Soc. Am.
(to be published).
66.
A. O.
Ekpezu
,
I.
Wiafe
,
F.
Katsriku
, and
W.
Yaokumah
, “
Using deep learning for acoustic event classification: The case of natural disasters
,”
J. Acoust. Soc. Am.
149
(
4
),
2926
2935
(
2021
).
67.
V. S.
Paul
and
P. A.
Nelson
, “
Matrix analysis for fast learning of neural networks with application to the classification of acoustic spectra
,”
J. Acoust. Soc. Am.
149
(
6
),
4119
4133
(
2021
).
68.
J.
Shao
,
J.
Zheng
, and
B.
Zhang
, “
Deep convolutional neural networks for thyroid tumour grading using ultrasound b-mode images
,”
J. Acoust. Soc. Am.
148
(
3
),
1529
1535
(
2020
).
You do not currently have access to this content.