The application of the Sliding Frank-Wolfe algorithm to gridless compressive beamforming is investigated for single and multi-snapshot measurements and the estimation of the three-dimensional (3D) position of the sources and their amplitudes. Sources are recovered by solving an infinite dimensional optimization problem, promoting sparsity of the solutions, and avoiding the basis mismatch issue. The algorithm does not impose constraints on the source model or array geometry. A variant of the algorithm is proposed for greedy identification of the sources. The experimental results and Monte Carlo simulations in 3D settings demonstrate the performances of the method and its numerical efficiency compared to the state of the art.

1.
H.
Krim
and
M.
Viberg
, “
Two decades of array signal processing research: The parametric approach
,”
IEEE Signal Process. Mag.
13
(
4
),
67
94
(
1996
).
2.
P.
Gerstoft
,
C. F.
Mecklenbräuker
,
W.
Seong
, and
M.
Bianco
, “
Introduction to compressive sensing in acoustics
,”
J. Acoust. Soc. Am.
143
(
6
),
3731
3736
(
2018
).
3.
S. S.
Chen
,
D. L.
Donoho
, and
M. A.
Saunders
, “
Atomic decomposition by basis pursuit
,”
SIAM Rev.
43
(
1
),
129
159
(
2001
).
4.
P.
Simard
and
J.
Antoni
, “
Acoustic source identification: Experimenting the 1 minimization approach
,”
Appl. Acoust.
74
(
7
),
974
986
(
2013
).
5.
A.
Xenaki
,
P.
Gerstoft
, and
K.
Mosegaard
, “
Compressive beamforming
,”
J. Acoust. Soc. Am.
136
(
1
),
260
271
(
2014
).
6.
D.
Malioutov
,
M.
Cetin
, and
A.
Willsky
, “
A sparse signal reconstruction perspective for source localization with sensor arrays
,”
IEEE Trans. Signal Process.
53
(
8
),
3010
3022
(
2005
).
7.
Y.
Pati
,
R.
Rezaiifar
, and
P.
Krishnaprasad
, “
Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
,” in
Proceedings of 27th Asilomar Conference on Signals, Systems and Computers
(
1993
), Vol.
1
, pp.
40
44
.
8.
Y.
Chi
,
L. L.
Scharf
,
A.
Pezeshki
, and
A. R.
Calderbank
, “
Sensitivity to basis mismatch in compressed sensing
,”
IEEE Trans. Signal Process.
59
(
5
),
2182
2195
(
2011
).
9.
V.
Duval
and
G.
Peyré
, “
Sparse regularization on thin grids I: The Lasso
,”
Inverse Problems
33
(
5
),
055008
(
2017
).
10.
C.
Ekanadham
,
D.
Tranchina
, and
E. P.
Simoncelli
, “
Recovery of sparse translation-invariant signals with continuous basis pursuit
,”
IEEE Trans. Signal Process.
59
(
10
),
4735
4744
(
2011
).
11.
Y.
Park
,
W.
Seong
, and
P.
Gerstoft
, “
Block-sparse two-dimensional off-grid beamforming with arbitrary planar array geometry
,”
J. Acoust. Soc. Am.
147
(
4
),
2184
2191
(
2020
).
12.
Z.
Yang
,
L.
Xie
, and
C.
Zhang
, “
Off-grid direction of arrival estimation using sparse Bayesian inference
,”
IEEE Trans. Signal Process.
61
(
1
),
38
43
(
2013
).
13.
A.
Das
, “
Deterministic and Bayesian sparse signal processing algorithms for coherent multipath directions-of-arrival (DOAs) estimation
,”
IEEE J. Ocean. Eng.
44
,
1150
1164
(
2019
).
14.
A.
Xenaki
and
P.
Gerstoft
, “
Grid-free compressive beamforming
,”
J. Acoust. Soc. Am.
137
(
4
),
1923
1935
(
2015
).
15.
Y.
Yang
,
Z.
Chu
,
Z.
Xu
, and
G.
Ping
, “
Two-dimensional grid-free compressive beamforming
,”
J. Acoust. Soc. Am.
142
(
2
),
618
629
(
2017
).
16.
Y.
Park
,
Y.
Choo
, and
W.
Seong
, “
Multiple snapshot grid free compressive beamforming
,”
J. Acoust. Soc. Am.
143
(
6
),
3849
3859
(
2018
).
17.
E. J.
Candès
and
C.
Fernandez-Granda
, “
Towards a mathematical theory of super-resolution
,”
Commun. Pure Appl. Math.
67
(
6
),
906
956
(
2014
).
18.
C.
Fernandez-Granda
, “
Super-resolution of point sources via convex programming
,”
Inf. Inference
5
(
3
),
251
303
(
2016
).
19.
Z.
Chu
,
Y.
Liu
,
Y.
Yang
, and
Y.
Yang
, “
A preliminary study on two-dimensional grid-free compressive beamforming for arbitrary planar array geometries
,”
J. Acoust. Soc. Am.
149
(
6
),
3751
3757
(
2021
).
20.
B.
Mamandipoor
,
D.
Ramasamy
, and
U.
Madhow
, “
Newtonized orthogonal matching pursuit: Frequency estimation over the continuum
,”
IEEE Trans. Signal Process.
64
(
19
),
5066
5081
(
2016
).
21.
Y.
Yang
,
Z.
Chu
,
Y.
Yang
, and
S.
Yin
, “
Two-dimensional Newtonized orthogonal matching pursuit compressive beamforming
,”
J. Acoust. Soc. Am.
148
(
3
),
1337
1348
(
2020
).
22.
Y.
de Castro
and
F.
Gamboa
, “
Exact reconstruction using Beurling minimal extrapolation
,”
J. Math. Anal. Appl.
395
(
1
),
336
354
(
2012
).
23.
Q.
Denoyelle
,
V.
Duval
,
G.
Peyré
, and
E.
Soubies
, “
The sliding Frank-Wolfe algorithm and its application to super-resolution microscopy
,”
Inverse Problems
36
(
1
),
014001
(
2020
).
24.
G.
Battista
,
P.
Chiariotti
,
M.
Martarelli
, and
P.
Castellini
, “
Inverse methods in aeroacoustic three-dimensional volumetric noise source localization and quantification
,”
J. Sound Vib.
473
,
115208
(
2020
).
25.
F.
Ning
,
J.
Wei
,
L.
Qiu
,
H.
Shi
, and
X.
Li
, “
Three-dimensional acoustic imaging with planar microphone arrays and compressive sensing
,”
J. Sound Vib.
380
,
112
128
(
2016
).
26.
T.
Padois
and
A.
Berry
, “
Two and three-dimensional sound source localization with beamforming and several deconvolution techniques
,”
Acta Acust. Acust.
103
,
392
400
(
2017
).
27.
G.
Chardon
and
U.
Boureau
, “
gilleschardon/SFWCB
,” at https://zenodo.org/record/5528801 (Last viewed 26/9/
2021
).
28.
J.
Chen
and
X.
Huo
, “
Theoretical results on sparse representations of multiple-measurement vectors
,”
IEEE Trans. Signal Process.
54
(
12
),
4634
4643
(
2006
).
29.
V.
Duval
and
G.
Peyré
, “
Sparse spikes super-resolution on thin grids II: The continuous basis pursuit
,”
Inverse Problems
33
(
9
),
095008
(
2017
).
30.
Technically, it is a member of a σ-algebra of Ω. For the sake of clarity, such technicalities will not be considered here and are discussed at length in appropriate textbooks (see Ref. 31).
31.
W.
Rudin
,
Real and Complex Analysis
, 3rd ed. (
McGraw-Hill
,
New York
,
1987
).
32.
J.
Nocedal
and
S. J.
Wright
,
Numerical Optimization
, 2nd ed. (
Springer
,
New York
,
2006
), Chap. 18.
33.
J.-B.
Courbot
and
B.
Colicchio
, “
A fast homotopy algorithm for gridless sparse recovery
,”
Inverse Problems
37
(
2
),
025002
(
2021
).
34.
O.
Scherzer
, “
The use of Morozov's discrepancy principle for Tikhonov regularization for solving nonlinear ill-posed problems
,”
Computing
51
(
1
),
45
60
(
1993
).
35.
G.
Chardon
,
F.
Ollivier
, and
J.
Picheral
, “
Localization of sparse and coherent sources by orthogonal least squares
,”
J. Acoust. Soc. Am.
146
(
6
),
4873
4882
(
2019
).
36.
Technically, a member of a σ-algebra of Ω. For the sake of clarity, such technicalities will not be considered here and are discussed at length in appropriate textbooks (see Ref. 31).
You do not currently have access to this content.