In many countries, the acoustic impact of wind farms is often constrained by a curtailment plan to limit their noise, which spreads in their surroundings. To update the plan, on/off cycle measurements are performed to determine the ambient noise (wind turbines in operation) and residual noise (wind turbines shut down), but these shutdown operations are limited in time, which reduces the representativeness of the estimated in situ emergence. Consequently, a machine learning technique, called nonnegative matrix factorization (NMF), is proposed to estimate the sound emergence of wind turbines continuously, i.e., without stopping the machines. In the first step, the application of NMF on a corpus of various simulated scenes allows the determination of the optimal setting of the method to better estimate the sound emergence. The results show the proper adaptation of the method with regard to the influence of the propagation distance and atmospheric conditions. This method also proves to be efficient in cases in which the real emergence is less than 5 dB(A) with a mean error lower than 2 dB(A). The first comparison with in situ measurements validates these performances and allows the consideration of the application of this method to optimize wind farm operations.

1.
I. J.
Onakpoya
,
J.
O'Sullivan
,
M. J.
Thompson
, and
C. J.
Heneghan
, “
The effect of wind turbine noise on sleep and quality of life: A systematic review and meta-analysis of observational studies
,”
Environ. Int.
82
,
1
9
(
2015
).
2.
E.
Koppen
and
K.
Fowler
, “
International legislation for wind turbine noise
,” in
Proceedings of the Euronoise
,
EAA
,
Maastritcht, Germany
(
2015
), pp.
321
326
.
3.
F.
Avallone
,
W.
Van Der Velden
,
D.
Ragni
, and
D.
Casalino
, “
Noise reduction mechanisms of sawtooth and combed-sawtooth trailing-edge serrations
,”
J. Fluid Mech.
848
,
560
591
(
2018
).
4.
A.
Nyborg
and
S.
Dalsgaard
, “
Power curtailment of wind turbines
,” U.S. patent 8,793,027 (1 July
2014
).
5.
D.
Caviedes-Nozal
,
F. M.
Heuchel
,
F.
Agerkvist
, and
J.
Brunskog
, “
The effect of atmospheric conditions on sound propagation and its impact on the outdoor sound field control
,” in
INTER-NOISE and NOISE-CON Congress and Conference Proceedings
,
Institute of Noise Control Engineering
,
Madrid, Spain
(
2019
), Vol.
259
, pp.
7211
7220
.
6.
C. R.
Hart
,
N. J.
Reznicek
,
D. K.
Wilson
,
C. L.
Pettit
, and
E. T.
Nykaza
, “
Comparisons between physics-based, engineering, and statistical learning models for outdoor sound propagation
,”
J. Acoust. Soc. Am.
139
(
5
),
2640
2655
(
2016
).
7.
B.
Cotté
, “
Extended source models for wind turbine noise propagation
,”
J. Acoust. Soc. Am.
145
(
3
),
1363
1371
(
2019
).
8.
B.
Dumortier
,
E.
Vincent
, and
M.
Deaconu
, “
Acoustic control of wind farms
,” in
Proceedings of the European Wind Energy Association Conference
,
EWEA
,
Paris, France
(
2015
).
9.
P.-S.
Huang
,
M.
Kim
,
M.
Hasegawa-Johnson
, and
P.
Smaragdis
, “
Deep learning for monaural speech separation
,” in
2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
IEEE
,
New York
,
2014
), pp.
1562
1566
.
10.
P.
Chandna
,
M.
Miron
,
J.
Janer
, and
E.
Gómez
, “
Monoaural audio source separation using deep convolutional neural networks
,” in
International Conference on Latent Variable Analysis and Signal Separation
(
Springer
,
New York
,
2017
), pp.
258
266
.
11.
Y.
Sudo
,
K.
Itoyama
,
K.
Nishida
, and
K.
Nakadai
, “
Multichannel environmental sound segmentation
,”
Appl. Intell.
51
,
8245
8259
(
2021
).
12.
C.
Févotte
,
E.
Vincent
, and
A.
Ozerov
, “
Single-channel audio source separation with NMF: Divergences, constraints and algorithms
,” in
Audio Source Separation
(
Springer
,
New York
,
2018
), pp.
1
24
.
13.
F.
Weninger
,
J. L.
Roux
,
J. R.
Hershey
, and
S.
Watanabe
, “
Discriminative NMF and its application to single-channel source separation
,” in
Fifteenth Annual Conference of the International Speech Communication Association
(
2014
).
14.
Q.
Zhou
,
Z.
Feng
, and
E.
Benetos
, “
Adaptive noise reduction for sound event detection using subband-weighted NMF
,”
Sensors
19
(
14
),
3206
(
2019
).
15.
J.-R.
Gloaguen
,
A.
Can
,
M.
Lagrange
, and
J.-F.
Petiot
, “
Road traffic sound level estimation from realistic urban sound mixtures by non-negative matrix factorization
,”
Appl. Acoust.
143
,
229
238
(
2019
).
16.
J.-R.
Gloaguen
,
D.
Ecotière
,
B.
Gauvreau
,
A.
Finez
,
A.
Petit
, and
C.
Lebourdat
, “
Automatic estimation of the sound emergence of wind turbines using non-negative matrix factorization: A preliminary study
,” in
e-FA2020; e-Forum Acusticum
,
Lyon, France
(
2020
).
17.
D. D.
Lee
and
H. S.
Seung
, “
Learning the parts of objects by non-negative matrix factorization
,”
Nature
401
(
6755
),
788
791
(
1999
).
18.
C.
Févotte
and
J.
Idier
, “
Algorithms for nonnegative matrix factorization with the β-divergence
,”
Neural Comput.
23
(
9
),
2421
2456
(
2011
).
19.
T.
Virtanen
, “
Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria
,”
IEEE Trans. Audio, Speech Lang. Process.
15
(
3
),
1066
1074
(
2007
).
20.
V.
Bisot
,
S.
Essid
, and
G.
Richard
, “
Overlapping sound event detection with supervised nonnegative matrix factorization
,” in
2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
IEEE
,
New York
,
2017
), pp.
31
35
.
21.
B.
Kayser
,
B.
Gauvreau
,
D.
Ecotière
, and
C.
Lebourdat
, “
A new experimental database for wind turbine noise propagation in an outdoor inhomogenous medium
,” in
17th Long Range Sound Propagation Symposium
,
LRSP
,
Lyon, France
(
2018
).
22.
IEC 61400-11:2012
:
Wind Turbines—Part 11: Acoustic Noise Measurement Techniques
(
International Electrotechnical Commission
,
Geneva, Switzerland
,
2012
).
23.
A.
L'Espérance
,
J. R.
Nicolas
,
P.
Herzog
, and
G. A.
Daigle
, “
Heuristic model for outdoor sound propagation based on an extension of the geometrical ray theory in the case of a linear sound speed profile
,”
Appl. Acoust.
37
(
2
),
111
139
(
1992
).
24.
E. M.
Salomons
,
Computational Atmospheric Acoustics
(
Springer Science and Business Media
,
Berlin
,
2012
).
25.
B.
Kayser
,
B.
Cotté
,
D.
Ecotière
, and
B.
Gauvreau
, “
Environmental parameters sensitivity analysis for the modeling of wind turbine noise in downwind conditions
,”
J. Acoust. Soc. Am.
148
(
6
),
3623
3632
(
2020
).
26.
Y.
Miki
, “
Acoustical properties of porous materials-modifications of Delany-Bazley models
,”
J. Acoust. Soc. Jpn. (E)
11
(
1
),
19
24
(
1990
).
27.
A.
Mesaros
,
T.
Heittola
,
E.
Benetos
,
P.
Foster
,
M.
Lagrange
,
T.
Virtanen
, and
M. D.
Plumbley
, “
Detection and classification of acoustic scenes and events: Outcome of the DCASE 2016 challenge
,”
IEEE/ACM Trans. Audio, Speech, Lang. Process.
26
(
2
),
379
393
(
2017
).
28.
J.-R.
Gloaguen
,
M.
Lagrange
,
A.
Can
, and
J.-F.
Petiot
, “
Study of the non-negative matrix factorization behavior to estimate the urban traffic sound levels
,” in
ICSV'26; 26ème International Congress on Sound and Vibration
,
Montreal, Canada
(
2019
).
29.
S.
Lee
,
D.
Lee
, and
S.
Honhoff
, “
Prediction of far-field wind turbine noise propagation with parabolic equation
,”
J. Acoust. Soc. Am.
140
(
2
),
767
778
(
2016
).
30.
B.
Kayser
,
B.
Gauvreau
, and
D.
Ecotière
, “
Sensitivity analysis of a parabolic equation model to ground impedance and surface roughness for wind turbine noise
,”
J. Acoust. Soc. Am.
146
(
5
),
3222
3231
(
2019
).
31.
Y.
Tian
and
B.
Cotté
, “
Wind turbine noise modeling based on Amiet's theory: Effects of wind shear and atmospheric turbulence
,”
Acta Acust. Acust.
102
(
4
),
626
639
(
2016
).
32.
N.
Seichepine
,
S.
Essid
,
C.
Févotte
, and
O.
Cappé
, “
Piecewise constant nonnegative matrix factorization
,” in
2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
IEEE
,
New York
,
2014
), pp.
6721
6725
.
You do not currently have access to this content.