In many countries, the acoustic impact of wind farms is often constrained by a curtailment plan to limit their noise, which spreads in their surroundings. To update the plan, on/off cycle measurements are performed to determine the ambient noise (wind turbines in operation) and residual noise (wind turbines shut down), but these shutdown operations are limited in time, which reduces the representativeness of the estimated in situ emergence. Consequently, a machine learning technique, called nonnegative matrix factorization (NMF), is proposed to estimate the sound emergence of wind turbines continuously, i.e., without stopping the machines. In the first step, the application of NMF on a corpus of various simulated scenes allows the determination of the optimal setting of the method to better estimate the sound emergence. The results show the proper adaptation of the method with regard to the influence of the propagation distance and atmospheric conditions. This method also proves to be efficient in cases in which the real emergence is less than 5 dB(A) with a mean error lower than 2 dB(A). The first comparison with in situ measurements validates these performances and allows the consideration of the application of this method to optimize wind farm operations.
Skip Nav Destination
Article navigation
October 2021
October 26 2021
Automatic estimation of the sound emergence of wind turbine noise with nonnegative matrix factorizationa)
Special Collection:
Machine Learning in Acoustics
Jean-Rémy Gloaguen;
Jean-Rémy Gloaguen
b)
1
Unité Mixte de Recherche en Acoustique Environnementale, Centre d'études et d'expertise sur les risques, l'environnement, la mobilité et l'aménagement, Université Gustave Eiffel
, Institut Français des Sciences et Technologies du Territoire, de l'Aménagement et des Réseaux, Strasbourg, 67035, France
Search for other works by this author on:
David Ecotière;
David Ecotière
1
Unité Mixte de Recherche en Acoustique Environnementale, Centre d'études et d'expertise sur les risques, l'environnement, la mobilité et l'aménagement, Université Gustave Eiffel
, Institut Français des Sciences et Technologies du Territoire, de l'Aménagement et des Réseaux, Strasbourg, 67035, France
Search for other works by this author on:
Benoit Gauvreau;
Benoit Gauvreau
2
Unité Mixte de Recherche en Acoustique Environnementale, Université Gustave Eiffel
, Institut Français des Sciences et Technologies du Territoire, de l'Aménagement et des Réseaux, Cerema, Bouguenais, 44344, France
Search for other works by this author on:
Arthur Finez;
Arthur Finez
3
ENGIE Green
, Nantes, 44000, France
Search for other works by this author on:
Arthur Petit;
Arthur Petit
3
ENGIE Green
, Nantes, 44000, France
Search for other works by this author on:
Colin Le Bourdat
Colin Le Bourdat
3
ENGIE Green
, Nantes, 44000, France
Search for other works by this author on:
b)
Electronic mail: jean-remy.gloaguen@orange.fr
a)
This paper is part of a special issue on Machine Learning in Acoustics.
J. Acoust. Soc. Am. 150, 3127–3138 (2021)
Article history
Received:
February 02 2021
Accepted:
September 19 2021
Citation
Jean-Rémy Gloaguen, David Ecotière, Benoit Gauvreau, Arthur Finez, Arthur Petit, Colin Le Bourdat; Automatic estimation of the sound emergence of wind turbine noise with nonnegative matrix factorization. J. Acoust. Soc. Am. 1 October 2021; 150 (4): 3127–3138. https://doi.org/10.1121/10.0006782
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00