We present a method for calibrating piezoelectric sensors using a laser Doppler vibrometer. Our method uses an average of Fourier transform terms of the recorded signal from the piezoelectric sensor, which is compared with the laser probe measurement in the overlapping frequency range. We use our method to calibrate the response of miniature needle sensors employed in acoustic emission testing to several different excitation sources of stress waves in the frequency range of 20–300 kHz. We demonstrate that the output of the piezoelectric sensors can be accurately scaled with particle velocity.
References
1.
Boltz
, E. S.
, and Fortunko
, C. M.
(1995
). “Absolute sensitivity limits of various ultrasonic transducers
,” Proc. IEEE Ultrason. Symp.
2
, 951
–954
.2.
Bracewell
, R. N.
(1986
). The Fourier Ttransform and its Applications (McGraw-Hill, New York), Vol. 31999, pp. 267–272.3.
Buehler
, M. J.
(2008
). “Atomistic modeling of materials failure
,” in Atomistic Modeling of Materials Faiure
(Springer Science & Business Media
, Berlin
), pp. 95
–120
.4.
Devaraju
, V.
, Lewin
, P. A.
, and Bleeker
, H.
(2002
). “Determination of sensitivity versus frequency characteristics of miniature ultrasonic hydrophones below 1 MHz using planar scanning technique
,” J. Ultrasound Med.
21
, 261
–268
.5.
Fortunko
, C. M.
, Hamstad
, M. A.
, and Fitting
, D. W.
(1992
). “High-fidelity acoustic-emission sensor/preamplifier subsystems: Modeling and experiments
,” in IEEE 1992 Ultrason. Symp. Proc.
(IEEE
, Piscataway, NJ
), pp. 327
–332
.6.
Fröhlich
, H.
(1952
). “Interaction of electrons with lattice vibrations
,” Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
215
(1122
), 291
–298
.7.
Fröhlich
, H.
(1954
). “Electrons in lattice fields
,” Adv. Phys.
3
, 325
–361
.8.
Ghaffari
, H. O.
, Griffith
, W. A.
, and Pec
, M.
(2019
). “Solitonic state in microscopic dynamic failures
,” Sci. Rep.
9
(1
), 1967
.9.
Ghaffari
, H. O.
, and Pec
, M.
(2020
). “An ultrasound probe array for a high-pressure, high-temperature solid medium deformation apparatus
,” Rev. Sci. Instrum.
91
, 85117
.10.
Ghaffari
, H. O.
, Mok
, U.
, and Pec
, M.
(2021
). “On calibration of piezoelectric sensors with laser doppler vibrometer
,” Zenodo
. https://10.5281/zenodo.554180111.
Glaser
, S. D.
, Weiss
, G. G.
, and Johnson
, L. R.
(1998
). “Body waves recorded inside an elastic half-space by an embedded, wideband velocity sensor
,” J. Acoust. Soc. Am.
104
, 1404
–1412
.12.
Greenspan
, M.
(1987
). “The NBS conical transducer: Analysis
,” J. Acoust. Soc. Am.
81
, 173
–183
.13.
Gu
, C.
, Mok
, U.
, Marzouk
, Y. M.
, Prieto
, G. A.
, Sheibani
, F.
, Evans
, J. B.
, and Hager
, B. H.
(2020
). “Bayesian waveform-based calibration of high-pressure acoustic emission systems with ball drop measurements
,” Geophys. J. Int.
221
(1
), 20
–36
.14.
Hamstad
, M. A.
(2007
). “Acoustic emission signals generated by monopole (pencil lead break) versus dipole sources: Finite element modeling and experiments
,” J. Acoust. Emiss.
25
, 92
–106
.15.
Hamstad
, M. A.
, and Fortunko
, C. M.
(1995
). “Development of practical wideband high-fidelity acoustic emission sensors
,” Nondestruct. Eval. Aging Bridg. Highw., International Society for Optics and Photonics
, 281
–288
.16.
Harris
, G. R.
, and Gammell
, P. M.
(1999
). “Sensitivity measurements of piezoelectric polymer hydrophones from 0.2–2 MHz using a broadband-pulse technique
,” J. Acoust. Soc. Am.
105
, 725
–731
.17.
Harris
, G. R.
, Gammell
, P. M.
, Lewin
, P. A.
, and Radulescu
, E. G.
(2004
). “Interlaboratory evaluation of hydrophone sensitivity calibration from 0.1 to 2 MHz via time delay spectrometry
,” Ultrasonics
42
, 349
–353
.18.
Haykin
, S.
, and Van Veen
, B.
(2007
). Signals and Systems
(John Wiley & Sons
, Hoboken, NJ
), pp. 1–144.19.
Hutter
, J. L.
, and Bechhoefer
, J.
(1993
). “Calibration of atomic‐force microscope tips
,” Rev. Sci. Instrum.
64
, 1868
–1873
.20.
Lei
, X.
, Kusunose
, K.
, Satoh
, T.
, and Nishizawa
, O.
(2003
). “The hierarchical rupture process of a fault: An experimental study
,” Phys. Earth Planet. Inter.
137
, 213
–228
.21.
Mahan
, G. D.
(2013
). Many-Particle Physics
(Springer Science & Business Media
, Berlin
), pp. 497–597.22.
Martens
, H.
, and Nï
, T.
(1992
). Multivariate Calibration
(John Wiley & Sons
, Hoboken, NJ
), pp. 73–232.23.
Mason
, W. P.
(1981
). “Piezoelectricity, its history and applications
,” J. Acoust. Soc. Am.
70
, 1561
–1566
.24.
Mason
, W. P.
(2012
). Physical Acoustics: Principles and Methods
(Elsevier
, Amsterdam
), Vol XIV, pp. 277–394.25.
McLaskey
, G. C.
, and Glaser
, S. D.
(2012
). “Acoustic emission sensor calibration for absolute source measurements
,” J. Nondestruct. Eval.
31
, 157
–168
.26.
Næs
, T.
, Isaksson
, T.
, Fearn
, T.
, and Davies
, T.
(2002
). A user-friendly guide to multivariate calibration and classification
, NIR Chichester
6
, 57027898
.27.
Nishizawa
, O.
, Satoh
, T.
, Lei
, X.
, and Kuwahara
, Y.
(1997
). “Laboratory studies of seismic wave propagation in inhomogeneous media using a laser Doppler vibrometer
,” Bull. Seismol. Soc. Am.
87
, 809
–823
.28.
Ohtsu
, M.
, and Ono
, K.
(1984
). “A generalized theory of acoustic emission and Green's functions in a half space
,” J. Acoust. Emiss.
3
, 27
–40
.29.
Ono
, K.
(2016
). “Calibration methods of acoustic emission sensors
,” Mater. (Basel)
9
, 508
30.
Pec
, M.
, Stünitz
, H.
, Heilbronner
, R.
, Drury
, M.
, and de Capitani
, C.
(2012
). “Origin of pseudotachylites in slow creep experiments
,” Earth Planet. Sci. Lett.
355-356
(0
), 299
–310
.31.
Požar
, T.
, Laloš
, J.
, Babnik
, A.
, Petkovšek
, R.
, Bethune-Waddell
, M.
, Chau
, K. J.
, Lukasievicz
, G. V. B.
, and Astrath
, N. G. C.
(2018
). “Isolated detection of elastic waves driven by the momentum of light
,” Nat. Commun.
9
, 1
–11
.32.
Požar
, T.
, and Možina
, J.
(2013
). “Measurement of elastic waves induced by the reflection of light
,” Phys. Rev. Lett.
111
, 185501
.33.
Proctor
, T. M.
, Jr. (1982a
). “Some details on the NBS conical transducer
,” J. Acoust. Emiss.
1
(3
), 173
–178
.34.
Proctor
, T. M.
, Jr. (1982b
). “An improved piezoelectric acoustic emission transducer
,” J. Acoust. Soc. Am.
71
, 1163
–1168
.35.
Proctor
, T. M.
, Jr. (1986
). “More recent improvements in the NBS conical transducer
,” J. Acoust. Emiss.
5
, 134
–142
.36.
Rosen
, C.
, Hiremath
, B. V.
, and Newnham
, R.
(1992
). Piezoelectricity
(Springer Science & Business Media
, Berlin
), pp. 155–159.37.
Rössler
, U.
(2004
). “Solid state theory: An introduction
,” Mater. Today, Springer Sci. Bus. Media
7
, 59
.38.
Roushan
, P.
, Neill
, C.
, Tangpanitanon
, J.
, Bastidas
, V. M.
, Megrant
, A.
, Barends
, R.
, Chen
, Y.
, Chen
, Z.
, Chiaro
, B.
, Dunsworth
, A.
, Fowler
, A.
, Foxen
, B.
, Giustina
, M.
, Jeffrey
, E.
, Kelly
, J.
, Lucero
, E.
, Mutus
, J.
, Neeley
, M.
, Quintana
, C.
, Sank
, D.
, Vainsencher
, A.
, Wenner
, J.
, White
, T.
, Neven
, H.
, Angelakis
, D. G.
, and Martinis
, J.
(2017
). “Spectroscopic signatures of localization with interacting photons in superconducting qubits
,” Science
358
, 1175
–1179
.39.
Sause
, M.
(2011
). “Investigation of pencil-lead breaks as acoustic emission sources
,” J. Acoust. Emiss.
29
, 184
–196
.40.
Sause
, M. G. R.
, and Hamstad
, M. A.
(2018
). “Numerical modeling of existing acoustic emission sensor absolute calibration approaches
,” Sens. Actuators A Phys.
269
, 294
–307
.41.
Sause
, M. G. R.
, Hamstad
, M. A.
, and Horn
, S.
(2012
). “Finite element modeling of conical acoustic emission sensors and corresponding experiments
,” Sens. Actuators A Phys.
184
, 64
–71
.42.
Selvadurai
, P. A.
, and Glaser
, S. D.
(2015
). “Novel monitoring techniques for characterizing frictional interfaces in the laboratory
,” Sensors
15
, 9791
–9814
.43.
Shiwa
, M.
, Inaba
, H.
, Carpenter
, S. H.
, and Kishi
, T.
(1992
). “Development of high-sensitivity and low-noise integrated acoustic emission sensor
,” Mater. Eval.
50
(7
), 868
–874
.44.
Theofanis
, P. L.
, Jaramillo-Botero
, A.
, Goddard
, W. A.
, III, and Xiao
, H.
(2012
). “Nonadiabatic study of dynamic electronic effects during brittle fracture of silicon
,” Phys. Rev. Lett.
108
(4
), 045501
.45.
Tingle
, T. N.
, Green
, H. W.
, Young
, T. E.
, and Koczynski
, T. A.
(1993
). “Improvements to Griggs-type apparatus for mechanical testing at high pressures and temperatures
,” Pure Appl. Geophys. PAGEOPH
141
, 523
–543
.46.
Wagner
, J. W.
(1990
). “Optical detection of ultrasound
,” Phys. Acoust.
19
, 201
–266
.© 2021 Acoustical Society of America.
2021
Acoustical Society of America
You do not currently have access to this content.