Acoustic vortex beams, which have both linear and angular momentum, can be used to make precise acoustic tweezers. Limited by the symmetry of a normal vortex beam, these tweezers are usually used for trapping or rotating particles in two dimensions. Here, the three-dimensional spiral motion of two soft particles of different sizes was realized using a vortex beam with a twisted focus, which was synthesized by a silicone binary-phase logarithmic-spiral zone plate. Numerical simulations and experimental measurements demonstrated that the beam had anisotropic focuses of crescent transverse intensity profiles and a screw phase dislocation with a singularity at the center. Experiments showed that a small particle (k0r ≈ 1.3) can follow the twisted intensity of the beam, but a large particle (k0r ≈ 4.7) spirals up away from the twisted field pattern. This is attributed to the dominant gradient force for the small particle, whereas the scattering effect induced a scattering force combined with a gradient force for the large particle. This focused twisted beam, which was generated with a structured silicone plate, and the three-dimensional spiral motion of microparticles, advance the development of simple, compact, and disposable acoustic devices for the precise and diverse manipulation of microparticles.

1.
Baresch
,
D.
,
Thomas
,
J.-L.
, and
Marchiano
,
R.
(
2016
). “
Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical tweezers
,”
Phys. Rev. Lett.
116
,
024301
.
2.
Baudoin
,
M.
,
Gerbedoen
,
J.-C.
,
Riaud
,
A.
,
Matar
,
O. B.
,
Smagin
,
N.
, and
Thomas
,
J.-L.
(
2019
). “
Folding a focalized acoustical vortex on a flat holographic transducer: Miniaturized selective acoustical tweezers
,”
Sci. Adv.
5
,
1
6
.
3.
Baudoin
,
M.
,
Thomas
,
J.-L.
,
Sahely
,
R. A.
,
Gerbedoen
,
J.-C.
,
Gong
,
Z.
,
Sivery
,
A.
,
Matar
,
O. B.
,
Smagin
,
N.
,
Favreau
,
P.
, and
Vlandas
,
A.
(
2020
). “
Spatially selective manipulation of cells with single-beam acoustical tweezers
,”
Nat. Commun.
11
,
4244
.
4.
Bruus
,
H.
(
2012
). “
Acoustofluidics 7: The acoustic radiation force on small particles
,”
Lab Chip
12
,
1014
1021
.
5.
Chen
,
D.-C.
,
Zhou
,
Q.-X.
,
Zhu
,
X.-F.
,
Xu
,
Z.
, and
Wu
,
D.-J.
(
2019
). “
Focused acoustic vortex by an artificial structure with two sets of discrete Archimedean spiral slits
,”
Appl. Phys. Lett.
115
,
083501
.
6.
Demore
,
C. E. M.
,
Yang
,
Z.
,
Volovick
,
A.
,
Cochran
,
S.
,
MacDonald
,
M. P.
, and
Spalding
,
G. C.
(
2012
). “
Mechanical evidence of the orbital angular momentum to energy ratio of vortex beams
,”
Phys. Rev. Lett.
108
,
194301
.
7.
Fan
,
X.-D.
, and
Zhang
,
L.
(
2019
). “
Trapping force of acoustical Bessel beams on a sphere and stable tractor beams
,”
Phys. Rev. Appl.
11
,
014055
.
8.
Faran
,
J. J.
(
1951
). “
Sound scattering by solid cylinders and spheres
,”
J. Acoust. Soc. Am.
23
,
405
418
.
9.
Hefner
,
B. T.
, and
Marston
,
P. L.
(
1999
). “
An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems
,”
J. Acoust. Soc. Am.
106
,
3313
3316
.
10.
Hickling
,
R.
(
1962
). “
Analysis of echoes from a solid elastic sphere in water
,”
J. Acoust. Soc. Am.
34
,
1582
1592
.
11.
Hirayama
,
R.
,
Martinez Plasencia
,
D.
,
Masuda
,
N.
, and
Subramanian
,
S.
(
2019
). “
A volumetric display for visual, tactile and audio presentation using acoustic trapping
,”
Nature
575
,
320
323
.
12.
Hong
,
Z.
,
Zhang
,
J.
, and
Drinkwater
,
B. W.
(
2015
). “
Observation of orbital angular momentum transfer from Bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures
,”
Phys. Rev. Lett.
114
,
214301
.
13.
Jia
,
Y.-R.
,
Wu
,
D.-J.
,
Yao
,
J.
,
Wei
,
Q.
,
Xu
,
Z.
, and
Liu
,
X.-J.
(
2020
). “
Acoustic tweezing for both Rayleigh and Mie particles based on acoustic focused petal beams
,”
Appl. Phys. Lett.
116
,
263504
.
14.
Jiang
,
X.
,
Li
,
Y.
,
Liang
,
B.
,
Cheng
,
J. C.
, and
Zhang
,
L.
(
2016
). “
Convert acoustic resonances to orbital angular momentum
,”
Phys. Rev. Lett.
117
,
034301
.
15.
Jiang
,
X.
,
Zhao
,
J.
,
Liu
,
S-l.
,
Liang
,
B.
,
Zou
,
X-y.
,
Yang
,
J.
,
Qiu
,
C.-W.
, and
Cheng
,
J-c.
(
2016
). “
Broadband and stable acoustic vortex emitter with multi-arm coling slits
,”
Appl. Phys. Lett.
108
,
203501
.
16.
Jiménez
,
N.
,
Picó
,
R.
,
Sanchez-Morcillo
,
V.
,
Romero-García
,
V.
,
García-Raffi
,
L. M.
, and
Staliunas
,
K.
(
2016
). “
Formation of high-order acoustic Bessel beams by spiral diffraction gratings
,”
Phys. Rev. E
94
,
053004
.
17.
King
,
L. V.
(
1934
). “
On the acoustic radiation pressure on spheres
,”
Proc. R. Soc. London
147
,
212
240
.
18.
Li
,
W.
,
Ke
,
M.
,
Peng
,
S.
,
Liu
,
F.
,
Qiu
,
C.
, and
Liu
,
Z.
(
2018
). “
Rotational manipulation by acoustic radiation torque of high-order vortex beams generated by an artificial structured plate
,”
Appl. Phys. Lett.
113
,
051902
19.
Liu
,
H.
,
Mehmood
,
M. Q.
,
Huang
,
K.
,
Ke
,
L.
,
Ye
,
H.
,
Genevet
,
P.
,
Zhang
,
M.
,
Danner
,
A.
,
Yeo
,
S. P.
,
Qiu
,
C.-W.
, and
Teng
,
J.
(
2014
). “
Twisted focusing of optical vortices with broadband flat spiral zone plates
,”
Adv. Opt. Mater.
2
,
1193
1198
.
20.
Marzo
,
A.
,
Seah
,
S. A.
,
Drinkwater
,
B. W.
,
Sahoo
,
D. R.
,
Long
,
B.
, and
Subramanian
,
S.
(
2015
). “
Holographic acoustic elements for manipulation of levitated objects
,”
Nat. Commun.
6
,
1
7
.
21.
Melde
,
K.
,
Mark
,
A. G.
,
Qiu
,
T.
, and
Fischer
,
P.
(
2016
). “
Holograms for acoustics
,”
Nature
537
,
518
522
.
22.
Ozcelik
,
A.
,
Rufo
,
J.
,
Guo
,
F.
,
Gu
,
Y.
,
Li
,
P.
,
Lata
,
J.
, and
Huang
,
T. J.
(
2018
). “
Acoustic tweezers for the life sciences
,”
Nat. Meth.
15
,
1021
1028
.
23.
Riaud
,
A.
,
Baudoin
,
M.
,
Bou Matar
,
O.
,
Becerra
,
L.
, and
Thomas
,
J.-L.
(
2017
). “
Selective manipulation of microscopic particles with precursor swirling Rayleigh waves
,”
Phys. Rev. Appl.
7
,
024007
.
24.
Sapozhnikov
,
O. A.
, and
Bailey
,
M. R.
(
2013
). “
Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid
,”
J. Acoust. Soc. Am.
133
,
661
676
.
25.
Thomas
,
J.-L.
, and
Marchiano
,
R.
(
2003
). “
Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices
,”
Phys. Rev. Lett.
91
,
244302
.
26.
Tian
,
Z.
,
Wang
,
Z.
,
Zhang
,
P.
,
Naquin
,
T. D.
,
Mai
,
J.
,
Wu
,
Y.
,
Yang
,
S.
,
Gu
,
Y.
,
Bachman
,
H.
,
Liang
,
Y.
,
Yu
,
Z.
, and
Huang
,
T. J.
(
2020
). “
Generating multifunctional acoustic tweezers in Petri dishes for contactless, precise manipulation of bioparticles
,”
Sci. Adv.
6
,
eabb0494
11
.
27.
Wiklund
,
M.
,
Radel
,
S.
, and
Hawkes
,
J. J.
(
2013
). “
Acoustofluidics 21: Ultrasound-enhanced immunoassays and particle sensors
,”
Lab Chip
13
,
25
39
.
28.
Wu
,
J. R.
(
1991
). “
Acoustical tweezers
,”
J. Acoust. Soc. Am.
89
,
2140
2143
.
29.
Yang
,
L.
,
Ma
,
Q.
,
Tu
,
J.
, and
Zhang
,
D.
(
2013
). “
Phase-coded approach for controllable generation of acoustical vortices
,”
J. Appl. Phys.
113
,
154904
.
30.
Zhang
,
L.
, and
Marston
,
P. L.
(
2011
). “
Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects
,”
Phys. Rev. E
84
,
065601
.
31.
Zhou
,
H.
,
Li
,
J.
,
Guo
,
K.
, and
Guo
,
Z.
(
2019
). “
Generation of acoustic vortex beams with designed Fermat's spiral diffraction grating
,”
J. Acoust. Soc. Am.
146
,
4237
4243
.

Supplementary Material

You do not currently have access to this content.