Over the last decades, physics-based modeling of musical instruments has seen increased attention. In 2020 and 2021, the Journal of the Acoustical Society of America accepted submissions for a special issue on the modeling of musical instruments. This article is intended as an introduction to the special issue. Our purpose is to discuss the role that modeling plays in the study of musical instruments, the kinds of things one hopes to learn from modeling studies, and how that work informs traditional experimental and theoretical studies of specific instruments. We also describe recent trends in modeling and make some observations about where we think the field is heading. Overall, our goal is to place the articles in the special issue into a context that helps the reader to better understand and appreciate the field.

1.
N. H.
Fletcher
and
T. D.
Rossing
,
The Physics of Musical Instruments
(
Springer-Verlag
,
New York
,
1991
).
2.
A.
Chaigne
and
J.
Kergomard
,
Acoustics of Musical Instruments
(
ASA Press/Springer-Verlag
,
New York
,
2016
).
3.
J. O.
Smith
, “
Physical modeling synthesis update
,”
Comput. Music J.
20
,
44
56
(
1996
).
4.
V.
Välimäki
,
J.
Pakarinen
,
C.
Erkut
, and
M.
Karjalainen
, “
Discrete-time modelling of musical instruments
,”
Rep. Prog. Phys.
69
,
1
78
(
2006
).
5.
S.
Bilbao
,
Numerical Sound Synthesis
(
Wiley & Sons
,
Chichester, UK
,
2009
).
6.
T.
Kirby
and
M.
Sandler
, “
The evolution of drum modes with strike intensity: Analysis and synthesis using the discrete cosine transform
,”
J. Acoust. Soc. Am.
150
(
1
),
202
214
(
2021
).
7.
W.
Kausel
,
A.
Mayer
, and
J.
Beauchamp
, “
Brass instruments as a cascade of two-port networks: Transfer functions, chain parameters, and power efficiency in theory and practice
,”
J. Acoust. Soc. Am.
149
(
4
),
2698
2710
(
2021
).
8.
M.
Rau
,
J.
Abel
,
D.
James
, and
J.
Smith
, “
Electric-to-acoustic pickup processing for string instruments: An experimental study of the guitar with a hexaphonic pickup
,”
J. Acoust. Soc. Am.
150
(
1
),
385
397
(
2021
).
9.
N.
Giordano
,
Physics of the Piano
(
Oxford University Press
,
Oxford, UK
,
2010
).
10.
L.
Hiller
and
P.
Ruiz
, “
Synthesizing musical sounds by solving the wave equation for vibrating objects: Part I
,”
J. Audio Eng. Soc.
19
,
462
472
(
1971
).
11.
D. E.
Hall
, “
Piano string excitation. vi: Nonlinear modeling
,”
J. Acoust. Soc. Am.
92
(
1
),
95
105
(
1992
).
12.
X.
Boutillon
, “
Model for piano hammers: Experimental determination and digital simulation
,”
J. Acoust. Soc. Am.
83
(
2
),
746
754
(
1988
).
13.
A.
Chaigne
and
A.
Askenfelt
, “
Numerical simulations of piano strings. I. a physical model for a struck string using finite difference methods
,”
J. Acoust. Soc. Am.
95
(
2
),
1112
1118
(
1994
).
14.
A.
Chaigne
and
A.
Askenfelt
, “
Numerical simulations of piano strings. II. Comparisons with measurements and systematic exploration of some hammer-string parameters
,”
J. Acoust. Soc. Am.
95
(
3
),
1631
1640
(
1994
).
15.
A.
Stulov
, “
Hysteretic model of the grand piano felt
,”
J. Acoust. Soc.. Am.
97
(
4
),
2577
2585
(
1995
).
16.
N.
Giordano
, “
Simple model of a piano soundboard
,”
J. Acoust. Soc. Am.
102
(
2
),
1159
1168
(
1997
).
17.
N.
Giordano
, “
Mechanical impedance of a piano soundboard
,”
J. Acoust. Soc. Am.
103
(
4
),
2128
2133
(
1998
).
18.
N.
Giordano
and
M.
Jiang
, “
Physical modeling of the piano
,”
EURASIP J. Appl. Signal Process.
2004
,
981942
.
19.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
Princeton University Press
,
Princeton, NJ
,
1968
).
20.
G.
Weinreich
, “
Coupled piano strings
,”
J. Acoust. Soc. Am.
62
,
1474
1484
(
1977
).
21.
J.
Chabassier
,
A.
Chaigne
, and
P.
Joly
, “
Modeling simulation of a grand piano
,”
J. Acoust. Soc. Am.
134
(
1
),
648
665
(
2013
).
22.
J.
Chabassier
and
M.
Duruflé
, “
Energy based simulation of a Timoshenko beam in non-forced rotation. Influence of the piano hammer shank flexibility on the sound
,”
J. Sound Vib.
333
(
26
),
7198
7215
(
2014
).
23.
H. A.
Conklin
, “
Piano strings and ‘phantom’ partials
,”
J. Acoust. Soc. Am.
102
,
659
1484
(
1997
).
24.
N.
Giordano
and
A. J.
Korty
, “
Motion of a piano string: Longitudinal vibrations and the role of the bridge
,”
J. Acoust. Soc. Am.
100
,
3899
3908
(
1996
).
25.
B.
Bank
and
L.
Sujbert
, “
Generation of longitudinal vibrations in piano strings: From physics to sound synthesis
,”
J. Acoust. Soc. Am.
117
(
4
),
2268
2278
(
2005
).
26.
B.
Bank
and
H.-M.
Lehtonen
, “
Perception of longitudinal components in piano string vibrations
,”
J. Acoust. Soc. Am.
128
(
3
),
EL117
EL123
(
2010
).
27.
O.
Ortmann
,
The Physiological Mechanics of Piano Technique
(
E. P. Dutton and Co
.,
New York
,
1962
).
28.
W.
Goebl
,
R.
Bresin
, and
A.
Galembo
, “
Touch and temporal behavior of grand piano actions
,”
J. Acoust. Soc. Am.
118
(
2
),
1154
1165
(
2005
).
29.
M. C.
Hirschkorn
, “
Dynamic model of a piano action mechanism
,” Master's thesis,
University of Waterloo
,
Waterloo, Canada
(
2004
).
30.
A.
Izadbakhsh
,
J.
McPhee
, and
S.
Birkett
, “
Dynamic modeling and experimental testing of a piano action mechanism with a flexible hammer shank
,”
J. Comput. Nonlinear Dyn.
3
(
3
),
031004
(
2008
).
31.
J.
Tan
,
A.
Chaigne
, and
A.
Acri
, “
Operational transfer path analysis of a piano
,”
Appl. Acoust.
140
,
39
47
(
2018
).
32.
J.
Woodhouse
, “
The acoustics of the violin: A review
,”
Rep. Prog. Phys.
77
(
11
),
115901
(
2014
).
33.
P.
Galluzzo
,
J.
Woodhouse
, and
H.
Mansour
, “
Assessing friction laws for simulating bowed-string motion
,”
Acta Acust. united Ac.
103
(
6
),
1080
1099
(
2017
).
34.
N.
Fletcher
, “
Nonlinearities in musical acoustics
,”
Acoust. Australia
14
,
3
71
(
1986
).
35.
V.
Chatziioannou
and
M.
van Walstijn
, “
Energy conserving schemes for the simulation of musical instrument contact dynamics
,”
J. Sound Vib.
339
,
262
279
(
2015
).
36.
M.
Ducceschi
,
S.
Bilbao
,
S.
Willemsen
, and
S.
Serafin
, “
Linearly-implicit schemes for collisions in musical acoustics based on energy quadratisation
,”
J. Acoust. Soc. Am.
149
(
5
),
3502
3516
(
2021
).
37.
F.
Avanzini
and
D.
Rocchesso
, “
Efficiency, accuracy, and stability issues in discrete-time simulations of single reed wind instruments
,”
J. Acoust. Soc. Am.
111
(
5
),
2293
2301
(
2002
).
38.
S.
Bilbao
,
A.
Torin
, and
V.
Chatziioannou
, “
Numerical modeling of collisions in musical instruments
,”
Acta Acust. united Ac.
101
(
1
),
155
173
(
2015
).
39.
N. N.
Lopes
and
T.
Hélie
, “
Energy balanced model of a jet interacting with a brass player's lip
,”
Acta Acust. united Ac.
102
(
1
),
141
154
(
2016
).
40.
M.
Vorländer
, “
Are virtual sounds real?
,”
Acoust. Today
16
(
1
),
46
54
(
2020
).
41.
E.
Maestre
,
G.
Scavone
, and
J.
Smith
, “
State-space modeling of sound source directivity: An experimental study of the violin and the clarinet
,”
J. Acoust. Soc. Am.
149
(
4
),
2768
2781
(
2021
).
42.
M.
Brandner
,
R.
Blandin
,
M.
Frank
, and
A.
Sontacchi
, “
A pilot study on the influence of mouth configuration and torso on singing voice directivity
,”
J. Acoust. Soc. Am.
148
(
3
),
1169
1180
(
2020
).
43.
C.
Pörschmann
and
J.
Arend
, “
Investigating phoneme-dependencies of spherical voice directivity patterns
,”
J. Acoust. Soc. Am.
149
(
6
),
4553
4564
(
2021
).
44.
J.
Pätynen
and
T.
Lokki
, “
Directivities of symphony orchestra instruments
,”
Acta Acust. united Ac.
96
(
1
),
138
167
(
2010
).
45.
C.
Gough
, “
Acoustic characterisation of string instruments by internal cavity measurements
,”
J. Acoust. Soc. Am.
150
,
1922
1933
(
2021
).
46.
S.
Bilbao
,
J.
Ahrens
, and
B.
Hamilton
, “
Incorporating source directivity in wave-based virtual acoustics: Time-domain models and fitting to measured data
,”
J. Acoust. Soc. Am.
146
(
4
),
2692
2703
(
2019
).
47.
S.
Gonzalez
,
D.
Salvi
,
F.
Antonacci
, and
A.
Sarti
, “
Eigenfrequency optimisation of free violin plates
,”
J. Acoust. Soc. Am.
149
(
3
),
1400
1410
(
2021
).
48.
C.
Chauhan
,
P.
Singru
, and
R.
Vathsan
, “
Vibro-acoustic modeling, numerical and experimental study of the resonator and its contribution to the timbre of sarasvati veena, a south indian stringed instrument
,”
J. Acoust. Soc. Am.
149
(
1
),
540
555
(
2021
).
49.
K.
Coaldrake
, “
A finite element model of the japanese koto constructed from computed tomography scans
,”
J. Acoust. Soc. Am.
148
(
5
),
3153
3170
(
2020
).
50.
P.
Rucz
,
M.
Ulveczki
,
J.
Angster
, and
A.
Miklós
, “
Simulation of mallet percussion instruments by a coupled modal vibroacoustic finite element model
,”
J. Acoust. Soc. Am.
149
(
5
),
3200
3212
(
2021
).
51.
J.-T.
Jiolat
,
C.
d'Alessandro
,
J.-L. L.
Carrou
, and
J.
Antunes
, “
Towards a physical model of the clavichord
,”
J. Acoust. Soc. Am.
150
(
2021
).
52.
P. A.
Skordos
, “
Modeling of Flue Pipes: Subsonic Flow, Lattice Boltzmann and parallel distributed distributed computers
,” Ph.D. thesis,
MIT
,
Cambridge, MA
(
1995
).
53.
P. A.
Skordos
and
G. J.
Sussman
, “
Comparison between subsonic flow simulation and physical measurements of flue pipes
,” in
Proceedings of the International Symposium on Musical Acoustics
,
Dourdan, France
(
July 2–6
,
1995
).
54.
H.
Kühnelt
, “
Simulating the mechanism of sound generation in flutes using the lattice boltzmann method
,” in
Proceedings of the Stockholm Music Acoustics Conference
,
Stockholm, Sweden
(
August 6–9
,
2003
).
55.
H.
Kühnelt
, “
Vortex sound in recorder- and flute-like instruments: Numerical simulation and analysis
,” in
International Symposium on Musical Acoustics
,
Barcelona, Spain
(
September 9–12
,
2007
).
56.
Y.
Shi
, “
A numerical framework for fluid-acoustic-structure interaction in clarinet-like instruments
,” Ph.D. thesis,
McGill University
,
Montreal, Quebec, Canada
(
2016
).
57.
Y.
Obikane
, “
Direct simulation on a fipple flute using the compressible navier-stokes equation
,”
World Acad. Sci. Eng. Technol.
60
,
794
798
(
2009
).
58.
N.
Giordano
, “
Simulation studies of a recorder in three dimensions
,”
J. Acoust. Soc. Am.
135
,
906
916
(
2014
).
59.
K.
Onogi
,
H.
Yokoyama
, and
A.
Iida
, “
Analysis of jet oscillations with acoustic radiation in the recorder by direct aeroacoustic simulations
,”
J. Acoust. Soc. Am.
146
(
2
),
1427
1437
(
2019
).
60.
N.
Giordano
, “
Force on the lips of a trumpet player
,”
J. Acoust. Soc. Am.
145
,
1521
1528
(
2019
).
61.
H.
Yokoyama
,
M.
Kobayashi
, and
A.
Iida
, “
Analysis of flow and acoustic radiation in reed instruments by compressible flow simulation
,”
Acoust. Sci. Technol.
41
,
739
750
(
2020
).
62.
N.
Giordano
and
J.
Thacker
, “
Navier-stokes-based model of the clarinet
,”
J. Acoust. Soc. Am.
148
(
6
),
3827
3835
(
2020
).
63.
T.
Yoshinaga
,
H.
Yokoyama
,
T.
Shoji
,
A.
Miki
, and
A.
Iida
, “
Global numerical simulation of fluid-structure-acoustic interaction in a single-reed instrument
,”
J. Acoust. Soc. Am.
149
(
3
),
1623
1632
(
2021
).
64.
R.
Tabata
,
R.
Matsuda
,
T.
Koiwaya
,
S.
Iwagami
,
H.
Midorikawa
,
T.
Kobayashi
, and
K.
Takahashi
, “
Three-dimensional numerical analysis of acoustic energy absorption and generation in an air-jet instrument based on howe's energy corollary
,”
J. Acoust. Soc. Am.
149
(
6
),
4000
4012
(
2021
).
65.
J.
Torres
,
C.
Soto
, and
D.
Torres-Torres
, “
Exploring design variations of the titian stradivari violin using a finite element model
,”
J. Acoust. Soc. Am.
148
(
3
),
1496
1506
(
2020
).
66.
A.
Brauchler
,
P.
Ziegler
, and
P.
Eberhard
, “
An entirely reverse-engineered finite element model of a classical guitar in comparison with experimental data
,”
J. Acoust. Soc. Am.
149
(
6
),
4450
4462
(
2021
).
67.
H.
Boutin
,
S. L.
Conte
,
J.
Le Carrou
, and
B.
Fabre
, “
How do wood polishing and oiling affect acoustic dissipation in the bore of wind instruments?
,” in
Proceeding of the International Symposium on Musical Acoustics
,
Montreal, Canada
(
June 18–22
,
2017
), p.
26
.
68.
T.
Moore
,
B.
Gorman
,
M.
Rokni
,
W.
Kausel
, and
V.
Chatziioannou
, “
Axial vibrations of brass wind instrument bells and their acoustical influence: Experiments
,”
J. Acoust. Soc. Am.
138
(
2
),
1233
1240
(
2015
).
69.
M.
Campbell
,
J.
Gilbert
, and
A.
Myers
,
The Science of Brass Instruments
(
Springer
,
New York
,
2020
).
70.
G.
Widholm
,
R.
Linortner
,
W.
Kausel
, and, and
M.
Bertsch
, “
Silver, gold, platinum-and the sound of the flute
,” in
Proceedings of the International Symposium on Musical Acoustics
,
Perugia, Italy
(
September 10–14
,
2001
), pp.
277
280
.
71.
D.
Beaton
and
G.
Scavone
, “
Three-dimensional tuning of idiophone bar modes via finite element analysis
,”
J. Acoust. Soc. Am.
149
(
6
),
3758
3768
(
2021
).
72.
J.
Thacker
and
N.
Giordano
, “
Regime change in the recorder: Using Navier–Stokes modeling to design a better instrument
,”
J. Acoust. Soc. Am.
150
(
1
),
43
50
(
2021
).
73.
S.
Wang
,
E.
Maestre
, and
G.
Scavone
, “
Acoustical modeling of the saxophone mouthpiece as a transfer matrix
,”
J. Acoust. Soc. Am.
149
(
3
),
1901
1912
(
2021
).
74.
M.
Ducceschi
and
C.
Touzé
, “
Modal approach for nonlinear vibrations of damped impacted plates: Application to sound synthesis of gongs and cymbals
,”
J. Sound Vib.
344
,
313
331
(
2015
).
75.
V.
Pagneux
,
N.
Amir
, and
J.
Kergomard
, “
A study of wave propagation in varying cross-section waveguides by modal decomposition. Part I. theory and validation
,”
J. Acoust. Soc. Am.
100
(
4
),
2034
2048
(
1996
).
76.
W.
D'haes
and
X.
Rodet
, “
Physical constraints for the control of a physical model of a trumpet
,” in
Proceedings of the International Conference on Digital Audio Effects (DAFx-02)
,
Hamburg, Germany
(
September 26–28
,
2002
).
77.
P.
Guillemain
,
C.
Vergez
,
D.
Ferrand
, and
A.
Farcy
, “
An instrumented saxophone mouthpiece and its use to understand how an experienced musician plays
,”
Acta Acust. united Ac.
96
(
4
),
622
634
(
2010
).
78.
M.
Pàmies-Vilà
,
A.
Hofmann
, and
V.
Chatziioannou
, “
Analysis of tonguing and blowing actions during clarinet performance
,”
Front. Psychol.
9
,
617
(
2018
).
79.
J.-P.
Dalmont
,
J.
Gilbert
, and
S.
Ollivier
, “
Nonlinear characteristics of single-reed instruments: Quasistatic volume flow and reed opening measurements
,”
J. Acoust. Soc. Am.
114
(
4
),
2253
2262
(
2003
).
80.
E.
Schoonderwaldt
, “
The violinist's sound palette: Spectral centroid, pitch flattening and anomalous low frequencies
,”
Acta Acust. united Ac.
95
(
5
),
901
914
(
2009
).
81.
A.
Almeida
,
J.
Lemare
,
M.
Sheahan
,
J.
Judge
,
R.
Auvray
,
K.
Dang
,
S.
John
,
J.
Geoffroy
,
J.
Katupitiya
,
P.
Santus
,
A.
Skougarevsky
,
J.
Smith
, and
J.
Wolfe
, “
Clarinet parameter cartography: Automatic mapping of the sound produced as a function of blowing pressure and reed force
,” in
Proceeding of the International Symposium on Musical Acoustics
,
Sydney, Australia
(
August 26–31
,
2010
).
82.
V.
Chatziioannou
,
S.
Schmutzhard
,
M.
Pàmies-Vilà
, and
A.
Hofmann
, “
Investigating clarinet articulation using a physical model and an artificial blowing machine
,”
Acta Acust. united Ac.
105
(
4
),
682
694
(
2019
).
83.
V.
Chatziioannou
,
S.
Schmutzhard
,
A.
Hofmann
, and
M.
Pàmies-Vilà
, “
Inverse modelling of clarinet performance
,” in
Proceedings of the International Congress on Sound and Vibration
,
Montreal, Canada
(
July 7–11
,
2019
).
84.
W.
Kausel
,
V.
Chatziioannou
,
T.
Moore
,
B.
Gorman
, and
M.
Rokni
, “
Axial vibrations of brass wind instrument bells and their acoustical influence: Theory and simulations
,”
J. Acoust. Soc. Am.
137
(
6
),
3149
3162
(
2015
).
85.
A.
da Silva
,
G.
Scavone
, and
M.
van Walstijn
, “
Numerical simulations of fluid-structure interactions in single-reed mouthpieces
,”
J. Acoust. Soc. Am.
122
(
3
),
1798
1809
(
2007
).
86.
H.
Mansour
,
J.
Woodhouse
, and
G.
Scavone
, “
Enhanced wave-based modelling of musical strings. Part 2: Bowed strings
,”
Acta Acust. united Ac.
102
(
6
),
1094
1107
(
2016
).
87.
L.
Gabrielli
,
M.
Cantarini
,
P.
Castellini
, and
S.
Squartini
, “
The rhodes electric piano: Analysis and simulation of the inharmonic overtones
,”
J. Acoust. Soc. Am.
148
(
5
),
3052
3064
(
2020
).
88.
K.
Siedenburg
,
S.
Jacobsen
, and
C.
Reuter
, “
Spectral envelope position and shape in sustained musical instrument sounds
,”
J. Acoust. Soc. Am.
149
(
6
),
3715
3726
(
2021
).
89.
S.
Hawley
,
V.
Chatziiannou
, and
A.
Morrison
, “
Synthesis of musical instrument sounds: Physics-based modeling or machine learning?
,”
Acoust. Today
16
(
1
),
20
28
(
2020
).
You do not currently have access to this content.