This study is aimed at predicting the characteristics of vibration and sound radiation of violins and understanding the relationships among the properties of its wood, vibration, and sound radiation. Numerical simulations of the vibration mode of a violin body are performed, and the sound radiated by it are analyzed using the finite element method. The geometry of a real violin is scanned using a micro-computed tomography scanner, and the orthotropic properties of spruce and maple, such as Young's modulus, rigidity modulus, and Poisson's ratio, are set as the parameters of the numerical simulation. The main vibration modes, such as A0 and center bout rotation, and the acoustic pressure level around the violin body are calculated. This paper describes the influence of the density and longitudinal stiffness on the eigenfrequencies and sound radiation.

1.
C. M.
Hutchins
and
V.
Benade
,
Research Papers in Violin Acoustics, 1975-1993: With an Introductory Essay, 350 Years of Violin Research
(
Acoustical Society of America
,
Woodbury, NY
,
1997
).
2.
J.
Woodhouse
, “
The acoustics of the violin: A review
,”
Rep. Prog. Phys.
77
(
11
),
115901
(
2014
).
3.
J.
Alonso Moral
and
E. V.
Jansson
, “
Input admittance, eigenmodes, and quality of violins
,”
Report TL-QPSR
(
1982
), pp.
2
3
.
4.
M.
Schleske
, “
Empirical tools in contemporary violin making: Part I. Analysis of design, materials, varnish, and normal modes
,”
Catgut Acoust. Soc. J. (Ser. II)
4
,
50
64
(
2002
).
5.
L. M.
Wang
and
C. B.
Burroughs
, “
Acoustic radiation from bowed violins
,”
J. Acoust. Soc. Am.
110
(1),
543
555
(
2001
).
6.
M.
Schleske
, “
Empirical tools in contemporary violin making: Part II. Psychoacoustic analysis and use of acoustical tools
,”
Catgut Acoust. Soc. J. (Ser. II)
4
(6),
43
61
(
2002
).
7.
R.
Corradi
,
A.
Liberatore
,
S.
Miccoli
,
F.
Antonacci
,
A.
Canclini
,
A.
Sarti
, and
M.
Zanoni
, “
A multidisciplinary approach to the characterization of bowed string instruments: The musical acoustics lab in Cremona
,” in
Proceedings of the 22nd International Congress on Sound and Vibration (ICSV22)
, Florence, Italy (July 12–16,
2015
).
8.
K.
Maki
, “
Spatial acoustic-radiation characteristic of a violin captured in the vicinity of a violinist
,”
J. Acoust. Soc. Am.
140
(
4
),
3429
(
2016
).
9.
C. E.
Gough
, “
A violin shell model: Vibrational modes and acoustics
,”
J. Acoust. Soc. Am.
137
(
3
),
1210
1225
(
2015
).
10.
E.
Ravina
, “
Violins characterization through vibro-acoustic experiments
,” in
Proceedings of Acoustics 2012
, Nantes, France (April 23–27,
2012
).
11.
M.
Pezzoli
,
R. R.
De Lucia
,
F.
Antonacci
, and
A.
Sarti
, “
Predictive simulation of mechanical behavior from 3D laser scans of violin plates
,” in
Proceedings of the 23rd International Conference on Acoustics 2019
, Aachen, Germany (September 9–13,
2019
).
12.
G.
Bissinger
and
D.
Oliver
, “
3-D laser vibrometry on legendary old Italian violins
,”
Sound Vib.
41
(7),
10
15
(
2007
).
13.
J.
Curtin
, “
Tap tones and weights of old Italian violin tops
,”
J. Violin Soc. Am.
20
(2),
161
174
(
2005
).
14.
R.
Viala
,
S.
Lämmlein
,
V.
Placet
, and
S.
Cogan
, “
Model-based quantification of the effect of wood modifications on the dynamics of the violin
,” in
Proceedings of the International Symposium on Music Acoustics 2019
, Detmold, Germany (September 13–17,
2019
).
15.
G.
Bissinger
,
E. G.
Williams
, and
N.
Valdivia
, “
Violin f-hole contribution to far-field radiation via patch near-field acoustical holography
,”
J. Acoust. Soc. Am.
121
(
6
),
3899
3906
(
2007
).
16.
M.
Yokoyama
,
R. R.
De Lucia
,
F.
Antonacci
, and
A.
Sarti
, “
Influence of orthotropic properties on vibration of violin top plates
,” in
Proceedings of the 23rd International Conference on Acoustics 2019
, Aachen, Germany (September 9–13,
2019
).
17.
COMSOL
, “
Acoustics Module User's Guide
,” https://doc.comsol.com/5.6/doc/com.comsol.help.aco/AcousticsModuleUsersGuide.pdf (Last viewed 15 September 2021).
18.
R. T.
Schumacher
, “
Compliances of wood for violin top plates
,”
J. Acoust. Soc. Am.
84
(
4
),
1223
1235
(
1988
).
19.
J. A.
Torres
,
C. A.
Soto
, and
D.
Torres-Torres
, “
Exploring design variations of the Titian Stradivari violin using a finite element model
,”
J. Acoust. Soc. Am.
148
(
3
),
1496
1506
(
2020
).
20.
S.
Gonzalez
,
D.
Salvi
,
D.
Baeza
,
F.
Antonacci
, and
A.
Sarti
, “
A data-driven approach to violin making
,”
Sci. Rep.
11
(
1
),
9455
(
2021
).
21.
D. W.
Green
,
J. E.
Winandy
, and
D. E.
Kretschmann
, “
Mechanical properties of wood. Wood handbook: Wood as an engineering material
,” General technical report FPL; GTR-113,
USDA Forest Service, Forest Products Laboratory
,
Madison, WI
(
1999
), pp.
4.1
4.45
.
22.
J.
Woodhouse
, “
Body vibration of the violin—What can a maker expect to control
,”
Catgut Acoust. Soc. J.
4
(5),
43
49
(
2002
).
23.
C. E.
Gough
, “
Violin acoustics
,”
Acoust. Today
12
(2),
22
30
(
2016
).
24.
C. E.
Gough
, “
The violin bridge-island input filter
,”
J. Acoust. Soc. Am.
143
,
1
12
(
2018
).
25.
A.
Brauchler
,
P.
Ziegler
, and
P.
Eberhard
, “
An entirely reverse-engineered finite element model of a classical guitar in comparison with experimental data
,”
J. Acoust. Soc. Am.
149
(
6
),
4450
4462
(
2021
).
You do not currently have access to this content.