Unmanned aerial vehicles, specifically quadrotor drones, are increasingly commonplace in community and workplace settings and are often used for photography, cinematography, and small parcel transport. The presence of these flying robotic systems has a substantial impact on the surrounding environment. To better understand the ergonomic impacts of quadrotor drones, a quantitative description of their acoustic signature is needed. While previous efforts have presented detailed acoustic characterizations, there is a distinct lack of high spatial-fidelity investigations of the acoustic field of a quadrotor hovering under its own power. This work presents an experimental quantification of the spatial acoustic pressure distribution in the near-field of a live hovering unmanned aerial vehicle. A large-aperture scanning microphone array was constructed to measure sound pressure level at a total of 1728 points over a 2 m × 3 m × 1.5 m volume. A physics-infused machine learning model was fit to the data to better visualize and understand the experimental results. The experimental data and modeling presented in this work are intended to inform future design of experiments for quadrotor drone acoustics, provide quantitative information on the acoustic near-field signature, and demonstrate the utility of optical motion tracking coupled with a custom microphone array for characterization of live acoustic sources.

1.
S. M.
Bae
,
K. H.
Han
,
C. N.
Cha
, and
H. Y.
Lee
, “
Development of inventory checking system based on UAV and RFID in open storage yard
,” in
Proceedings of the 2016 International Conference on Information Science and Security (ICISS)
, Pattaya, Thailand (December 19–22,
2016
), pp.
1
2
.
2.
D.
Cristiani
,
F.
Bottonelli
,
A.
Trotta
, and
M. D.
Felice
, “
Inventory management through mini-drones: Architecture and proof-of-concept implementation
,” in
Proceedings of the 2020 IEEE 21st International Symposium on “A World of Wireless,” Mobile and Multimedia Networks(WoWMoM)
, Cork, Ireland (August 31–September 3,
2020
), pp.
317
322
.
3.
J.
Nikolic
,
M.
Burri
,
J.
Rehder
,
S.
Leutenegger
,
C.
Huerzeler
, and
R.
Siegwart
, “
A UAV system for inspection of industrial facilities
,” in
Proceedings of the 2013 IEEE Aerospace Conference
, Big Sky, MT (March 2–9,
2013
), pp.
1
8
.
4.
H.
Guan
,
X.
Sun
,
Y.
Su
,
T.
Hu
,
H.
Wang
,
H.
Wang
,
C.
Peng
, and
Q.
Guo
, “
UAV-lidar aids automatic intelligent powerline inspection
,”
Int. J. Electr. Power Energy Syst.
130
,
106987
(
2021
).
5.
J.
Callanan
,
P.
Ghassemi
,
J.
DiMartino
,
M.
Dhameliya
,
C.
Stocking
,
M.
Nouh
, and
S.
Chowdhury
, “
Ergonomic impact of multi-rotor unmanned aerial vehicle noise in warehouse environments
,”
J. Intell. Robot. Syst.
100
(
3
),
1309
1323
(
2020
).
6.
A. J.
Torija
,
P.
Chaitanya
, and
Z.
Li
, “
Psychoacoustic analysis of contra-rotating propeller noise for unmanned aerial vehicles
,”
J. Acoust. Soc. Am.
149
(
2
),
835
846
(
2021
).
7.
G.
Sinibaldi
and
L.
Marino
, “
Experimental analysis on the noise of propellers for small UAV
,”
Appl. Acoust.
74
(
1
),
79
88
(
2013
).
8.
F.
Christiansen
,
L.
Rojano-Doñate
,
P. T.
Madsen
, and
L.
Bejder
, “
Noise levels of multi-rotor unmanned aerial vehicles with implications for potential underwater impacts on marine mammals
,”
Front. Mar. Sci.
3
,
277
(
2016
).
9.
N.
Kloet
,
S.
Watkins
, and
R.
Clothier
, “
Acoustic signature measurement of small multi-rotor unmanned aircraft systems
,”
Int. J. Micro Air Veh.
9
(
1
),
3
14
(
2017
).
10.
R.
Serré
,
V.
Chapin
,
J.-M.
Moschetta
, and
H.
Fournier
, “
Reducing the noise of micro-air vehicles in hover
,” in
Proceedings of the International Micro Air Vehicle Conference and Flight Competition (IMAV 2017)
, Toulouse, France (September 18–21,
2017
), pp.
51
59
.
11.
A.
Leslie
,
K. C.
Wong
, and
D.
Auld
, “
Broadband noise reduction on a mini-UAV propeller
,” in
Proceedings of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference)
, Vancouver, Canada (May 5–7,
2008
), p.
3069
.
12.
N.
Intaratep
,
W. N.
Alexander
,
W. J.
Devenport
,
S. M.
Grace
, and
A.
Dropkin
, “
Experimental study of quadcopter acoustics and performance at static thrust conditions
,” in
Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference
, Lyon, France (May 30–June 1,
2016
), p.
2873
.
13.
R.
Cabell
,
F.
Grosveld
, and
R.
McSwain
, “
Measured noise from small unmanned aerial vehicles
,” in
Inter-Noise and Noise-Con Congress and Conference Proceedings
, Noise-Con 16, Providence, RI (June 13–15,
2016
), Vol.
252
, pp.
345
354
.
14.
A.
Christian
,
D. D.
Boyd
, Jr.
,
N. S.
Zawodny
, and
A.
Rizzi
, “
Auralization of tonal rotor noise components of a quadcopter flyover
,” in
Inter-Noise and Noise-Con Congress and Conference Proceedings
, Inter-Noise 2015, San Francisco, CA (August 9–12,
2015
), Vol.
250
, pp.
3983
3994
.
15.
C. F.
Wisniewski
,
A.
Byerley
,
K. W.
Van Treuren
, and
A.
Hays
, “
Experimentally testing commercial and custom designed quadcopter propeller static performance and noise generation
,” in
Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference
, Denver, CO (June 5–9,
2017
), p.
3711
.
16.
C. E.
Tinney
and
J.
Sirohi
, “
Multirotor drone noise at static thrust
,”
AIAA J.
56
(
7
),
2816
2826
(
2018
).
17.
T.
Blanchard
,
J.-H.
Thomas
, and
K.
Raoof
, “
Acoustic localization and tracking of a multi-rotor unmanned aerial vehicle using an array with few microphones
,”
J. Acoust. Soc. Am.
148
(
3
),
1456
1467
(
2020
).
18.
J. D.
Maynard
,
E. G.
Williams
, and
Y.
Lee
, “
Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH
,”
J. Acoust. Soc. Am.
78
(
4
),
1395
1413
(
1985
).
19.
W.
Veronesi
and
J. D.
Maynard
, “
Nearfield acoustic holography (NAH). II. Holographic reconstruction algorithms and computer implementation
,”
J. Acoust. Soc. Am.
81
(
5
),
1307
1322
(
1987
).
20.
R. K.
Mueller
, “
Acoustic holography
,”
Proc. IEEE
59
(
9
),
1319
1335
(
1971
).
21.
C.
Lindsey
and
D.
Braun
, “
Basic principles of solar acoustic holography—(invited review)
,”
Sol. Phys.
192
(
1
),
261
284
(
2000
).
22.
S. F.
Wu
, “
Hybrid near-field acoustic holography
,”
J. Acoust. Soc. Am.
115
(
1
),
207
217
(
2004
).
23.
F.
Jacobsen
and
V.
Jaud
, “
Statistically optimized near field acoustic holography using an array of pressure-velocity probes
,”
J. Acoust. Soc. Am.
121
(
3
),
1550
1558
(
2007
).
24.
J.
Hald
, “
Basic theory and properties of statistically optimized near-field acoustical holography
,”
J. Acoust. Soc. Am.
125
(
4
),
2105
2120
(
2009
).
25.
Z.
Lan-Yue
,
W.
Jia
,
Y.
De-Sen
,
S.
Jie
,
S.
Sheng-Guo
, and
Z.
Zhong-Rui
, “
Combined method of near field acoustic holography and focused beamforming for noise source identification in enclosed space
,”
Int. J. Acoust. Vib.
22
(
3
),
384
394
(
2017
).
26.
G.
Weinreich
and
E. B.
Arnold
, “
Method for measuring acoustic radiation fields
,”
J. Acoust. Soc. Am.
68
(
2
),
404
411
(
1980
).
27.
E. G.
Williams
,
J. D.
Maynard
, and
E.
Skudrzyk
, “
Sound source reconstructions using a microphone array
,”
J. Acoust. Soc. Am.
68
(
1
),
340
344
(
1980
).
28.
M.
Legg
and
S.
Bradley
, “
Automatic 3D scanning surface generation for microphone array acoustic imaging
,”
Appl. Acoust.
76
,
230
237
(
2014
).
29.
R.
Zelinski
, “
A microphone array with adaptive post-filtering for noise reduction in reverberant rooms
,” in
Proceedings of ICASSP-88: International Conference on Acoustics, Speech, and Signal Processing
, New York (April 11–14,
1988
), pp.
2578
2579
.
30.
J.
Benesty
,
J.
Chen
, and
Y.
Huang
,
Microphone Array Signal Processing
, Vol.
1
(
Springer Science and Business Media
,
New York
,
2008
).
31.
M.
Brandstein
and
D.
Ward
,
Microphone Arrays: Signal Processing Techniques and Applications
(
Springer Science and Business Media
,
New York
,
2013
).
32.
J.
Benesty
and
C.
Jingdong
,
Study and Design of Differential Microphone Arrays
, Vol.
6
(
Springer Science and Business Media
,
New York
,
2012
).
33.
G. W.
Elko
and
J.
Meyer
, “
Microphone arrays
,” in
Springer Handbook of Speech Processing
(
Springer
,
New York
,
2008
), pp.
1021
1041
.
34.
E.
Weinstein
,
K.
Steele
,
A.
Agarwal
, and
J.
Glass
,
Loud: A 1020 Node Microphone Array and Acoustic Beamformer
(
Courant Institute of Mathematical Sciences
,
New York
,
2007
).
35.
J.
Flanagan
,
D.
Berkley
,
G.
Elko
,
J.
West
, and
M.
Sondhi
, “
Autodirective microphone systems
,”
Acta Acust. united Acust.
73
(
2
),
58
71
(
1991
).
36.
H. F.
Silverman
,
W. R.
Patterson
, and
J. L.
Flanagan
, “
The huge microphone array
,”
IEEE Concurr.
6
(
4
),
36
46
(
1998
).
37.
B.
Rafaely
, “
Analysis and design of spherical microphone arrays
,”
IEEE Trans. Speech Audio Process.
13
(
1
),
135
143
(
2005
).
38.
A.
Ramamonjy
,
E.
Bavu
,
A.
Garcia
, and
S.
Hengy
, “
A distributed network of compact microphone arrays for drone detection and tracking
,”
J. Acoust. Soc. Am.
141
(
5
),
3651
3651
(
2017
).
39.
J.
Kotus
and
B.
Kostek
, “
Measurements and visualization of sound intensity around the human head in free field using acoustic vector sensor
,”
J. Audio Eng. Soc.
63
(
1
),
99
109
(
2015
).
40.
M.
Szczodrak
,
A.
Kurowski
,
J.
Kotus
,
A.
Czyżewski
, and
B.
Kostek
, “
A system for acoustic field measurement employing cartesian robot
,”
Metrol. Meas. Syst.
23
(
3
),
333
343
(
2016
).
41.
J.
Kotus
,
A.
Czyżewski
, and
B.
Kostek
, “
3D acoustic field intensity probe design and measurements
,”
Arch. Acoust.
41
(
4
),
701
711
(
2016
).
42.
J.-M.
Valin
,
F.
Michaud
,
J.
Rouat
, and
D.
Létourneau
, “
Robust sound source localization using a microphone array on a mobile robot
,” in
Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)
, Las Vegas, NV (October 27–31,
2003
). Vol.
2
, pp.
1228
1233
.
43.
J.-S.
Hu
,
C.-Y.
Chan
,
C.-K.
Wang
,
M.-T.
Lee
, and
C.-Y.
Kuo
, “
Simultaneous localization of a mobile robot and multiple sound sources using a microphone array
,”
Adv. Robot.
25
(
1
),
135
152
(
2011
).
44.
B.
Rafaely
,
I.
Balmages
, and
L.
Eger
, “
High-resolution plane-wave decomposition in an auditorium using a dual-radius scanning spherical microphone array
,”
J. Acoust. Soc. Am.
122
(
5
),
2661
2668
(
2007
).
45.
N.
Ryden
,
M. J.
Lowe
, and
P.
Cawley
, “
Non-contact surface wave scanning of pavements using a rolling microphone array
,”
AIP Conf. Proc.
975
,
1328
1332
(
2008
).
46.
M. J.
Bianco
,
P.
Gerstoft
,
J.
Traer
,
E.
Ozanich
,
M. A.
Roch
,
S.
Gannot
, and
C.-A.
Deledalle
, “
Machine learning in acoustics: Theory and applications
,”
J. Acoust. Soc. Am.
146
(
5
),
3590
3628
(
2019
).
47.
P. J.
Haley
and
D.
Soloway
, “
Extrapolation limitations of multilayer feedforward neural networks
,” in
Proceedings of the 1992 IJCNN International Joint Conference on Neural Networks
, Baltimore, MD (June 7–11,
1992
), Vol.
4
, pp.
25
30
.
48.
R. M.
Neal
,
Bayesian Learning Neural Networks
(
Springer Science and Business Media
,
New York
,
2012
).
49.
V.
Atamuradov
,
K.
Medjaher
,
P.
Dersin
,
B.
Lamoureux
, and
N.
Zerhouni
, “
Prognostics and health management for maintenance practitioners-review, implementation and tools evaluation
,”
Int. J. Progn. Health Manag.
8
(
060
),
1
31
(
2020
).
50.
K.
Javed
, “
A robust and reliable data-driven prognostics approach based on extreme learning machine and fuzzy clustering
,” Ph.D. thesis,
Université de Franche-Comté
,
Besançon, France
,
2014
.
51.
A.
Karpatne
,
W.
Watkins
,
J.
Read
, and
V.
Kumar
, “
Physics-guided neural networks (PGNN): An application in lake temperature modeling
,” arXiv:1710.11431 (
2017
).
52.
C.-C.
Young
,
W.-C.
Liu
, and
M.-C.
Wu
, “
A physically based and machine learning hybrid approach for accurate rainfall-runoff modeling during extreme typhoon events
,”
Appl. Soft Comput.
53
,
205
216
(
2017
).
53.
A.
Behjat
,
C.
Zeng
,
R.
Rai
,
I.
Matei
,
D.
Doermann
, and
S.
Chowdhury
, “
A physics-aware learning architecture with input transfer networks for predictive modeling
,”
Appl. Soft Comput.
96
,
106665
(
2020
).
54.
I.
Matei
,
C.
Zeng
,
S.
Chowdhury
,
R.
Rai
, and
J.
de Kleer
, “
Controlling draft interactions between quadcopter unmanned aerial vehicles with physics-aware modeling
,”
J. Intelligent Robot. Syst.
101
(
1
),
1
21
(
2021
).
55.
S. K.
Singh
,
R.
Yang
,
A.
Behjat
,
R.
Rai
,
S.
Chowdhury
, and
I.
Matei
, “
PI-lSTM: Physics-infused long short-term memory network
,” in
Proceedings of the 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA)
, Boca Raton, FL (December 16–19,
2019
), pp.
34
41
.
56.
L. E.
Kinsler
,
A. R.
Frey
,
A. B.
Coppens
, and
J. V.
Sanders
,
Fundamentals of Acoustics
(
Wiley
,
New York
,
1999
).
57.
See supplementary material at https://www.scitation.org/doi/suppl/10.1121/10.0006369 for a video file demonstrating the data collection procedure and experimental setup.
58.
For the full experimental data set, partial physics model code, and machine learning model, see https://github.com/adamslab-ub/UAV-Noise-Experimental-Data-and-Modeling (Last viewed 13 September 2021).
59.
D. H.
Bies
,
C. H.
Hansen
, and
R. H.
Campbell
,
Engineering Noise Control
(
Spon
,
London
,
1996
).

Supplementary Material

You do not currently have access to this content.