In the last few years, highly anisotropic metamaterials have been explored in various geometries, showcasing interesting routes to achieve better control of sound propagation. As an extreme example, hyperbolic metasurfaces have been shown to offer broadband enhanced sound-matter interactions and diffraction-less propagation of acoustic waves, providing opportunities for sub-diffraction imaging and enhanced sound emission. In this study, we show that structure design of a locally resonant metamaterial enables extreme anisotropic responses, ranging from elliptic to hyperbolic propagation of acoustic surface waves, offering interesting opportunities for extreme sound guiding and steering at the subwavelength scale well compatible with a wide range of additive manufacturing techniques.

1.
N.
Engheta
and
R. W.
Ziolkowski
,
Metamaterials: Physics and Engineering Explorations
(
Wiley
,
New York
,
2006
).
2.
P. A.
Deymier
,
Acoustic Metamaterials and Phononic Crystals
(
Springer Science & Business Media
,
New York
,
2013
), Vol.
173
.
3.
S. A.
Cummer
,
J.
Christensen
, and
A.
Alù
, “
Controlling sound with acoustic metamaterials
,”
Nat. Rev. Mater.
1
,
16001
(
2016
).
4.
G.
Ma
and
P.
Sheng
, “
Acoustic metamaterials: From local resonances to broad horizons
,”
Sci. Adv.
2
,
e1501595
(
2016
).
5.
J.
Christensen
and
F. J. G.
de Abajo
, “
Anisotropic metamaterials for full control of acoustic waves
,”
Phys. Rev. Lett.
108
,
124301
(
2012
).
6.
A.
Poddubny
,
I.
Iorsh
,
P.
Belov
, and
Y.
Kivshar
, “
Hyperbolic metamaterials
,”
Nat. Photon.
7
(
12
),
948
957
(
2013
).
7.
C.
Shen
,
Y.
Xie
,
N.
Sui
,
W.
Wang
,
S. A.
Cummer
, and
Y.
Jing
, “
Broadband acoustic hyperbolic metamaterial
,”
Phys. Rev. Lett.
115
(
25
),
254301
(
2015
).
8.
F.
Ju
,
Y.
Cheng
, and
X.
Liu
, “
Acoustic spin Hall-like effect in hyperbolic metamaterials controlled by the helical wave
,”
Sci. Rep.
8
,
1
7
(
2018
).
9.
R. E.
Christiansen
and
O.
Sigmund
, “
Experimental validation of systematically designed acoustic hyperbolic meta material slab exhibiting negative refraction
,”
Appl. Phys. Lett.
109
,
101905
(
2016
).
10.
V. M.
Garcia-Chocano
,
J.
Christensen
, and
J.
Sánchez-Dehesa
, “
Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics
,”
Phys. Rev. Lett.
112
,
144301
(
2014
).
11.
L.
Quan
and
A.
Alù
, “
Hyperbolic sound propagation over nonlocal acoustic metasurfaces
,”
Phys. Rev. Lett.
123
,
244303
(
2019
).
12.
B.
Assouar
,
B.
Liang
,
Y.
Wu
,
Y.
Li
,
J. C.
Cheng
, and
Y.
Jing
, “
Acoustic metasurfaces
,”
Nat. Rev. Mater.
3
(
12
),
460
472
(
2018
).
13.
L.
Quan
,
Y.
Ra'di
,
D. L.
Sounas
, and
A.
Alù
, “
Maximum Willis coupling in acoustic scatterers
,”
Phys. Rev. Lett.
120
(
25
),
254301
(
2018
).
14.
Y.
Li
,
X.
Jiang
,
B.
Liang
,
J. C.
Cheng
, and
L.
Zhang
, “
Metascreen-based acoustic passive phased array
,”
Phys. Rev. Appl.
4
(
2
),
024003
(
2015
).
15.
N.
Kaina
,
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
, “
Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials
,”
Nature
525
(
7567
),
77
81
(
2015
).
16.
D.
Torrent
and
J.
Sánchez-Dehesa
, “
Acoustic analogue of graphene: Observation of Dirac cones in acoustic surface waves
,”
Phys. Rev. Lett.
108
(
17
),
174301
(
2012
).
17.
T. A.
Starkey
,
V.
Kyrimi
,
G. P.
Ward
,
J. R.
Sambles
, and
A. P.
Hibbins
, “
Experimental characterisation of the bound acoustic surface modes supported by honeycomb and hexagonal hole arrays
,”
Sci. Rep.
9
(
1
),
1
9
(
2019
).
18.
S.
Yves
,
R.
Fleury
,
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
, “
Topological acoustic polaritons: Robust sound manipulation at the subwavelength scale
,”
New J. Phys.
19
(
7
),
075003
(
2017
).
19.
Z.
Tian
,
C.
Shen
,
J.
Li
,
E.
Reit
,
H.
Bachman
,
J. E.
Socolar
,
S. A.
Cummer
, and
T. J.
Huang
, “
Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals
,”
Nat. Commun.
11
(
1
),
1
10
(
2020
).
20.
Z.
Zhang
,
H.
Long
,
C.
Liu
,
C.
Shao
,
Y.
Cheng
,
X.
Liu
, and
J.
Christensen
, “
Deep‐subwavelength holey acoustic second‐order topological insulators
,”
Adv. Mater.
31
(
49
),
1904682
(
2019
).
21.
Z.
Yue
,
D.
Liao
,
Z.
Zhang
,
W.
Xiong
,
Y.
Cheng
, and
X.
Liu
, “
Experimental demonstration of a reconfigurable acoustic second-order topological insulator using condensed soda cans array
,”
Appl. Phys. Lett.
118
(
20
),
203501
(
2021
).
22.
M.
Askari
,
D. A.
Hutchins
,
P. J.
Thomas
,
L.
Astolfi
,
R. L.
Watson
,
M.
Abdi
,
M.
Ricci
,
S.
Laureti
,
L.
Nie
,
S.
Freear
, and
R.
Wildman
, “
Additive manufacturing of metamaterials: A review
,”
Addit. Manuf.
36
,
101562
(
2020
).
23.
A.
Gardiner
,
P.
Daly
,
R.
Domingo-Roca
,
J. F.
Windmill
,
A.
Feeney
, and
J. C.
Jackson-Camargo
, “
Additive manufacture of small-scale metamaterial structures for acoustic and ultrasonic applications
,”
Micromachines
12
(
6
),
634
(
2021
).
24.
X.
Wu
,
Y.
Su
, and
J.
Shi
, “
Perspective of additive manufacturing for metamaterials development
,”
Smart Mater. and Struct
.,
28
(9),
093001
(
2019
).
25.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y. Y.
Zhu
,
Z.
Yang
,
C. T.
Chan
, and
P.
Sheng
, “
Locally resonant sonic materials
,”
Science
289
(
5485
),
1734
1736
(
2000
).
26.
M.
Lanoy
,
J. H.
Page
,
G.
Lerosey
,
F.
Lemoult
,
A.
Tourin
, and
V.
Leroy
, “
Acoustic double negativity induced by position correlations within a disordered set of monopolar resonators
,”
Phys. Rev. B
96
(
22
),
220201
(
2017
).
27.
V.
Leroy
,
A.
Strybulevych
,
M.
Lanoy
,
F.
Lemoult
,
A.
Tourin
, and
J. H.
Page
, “
Superabsorption of acoustic waves with bubble metascreens
,”
Phys. Rev. B
91
(
2
),
020301
(
2015
).
28.
See supplementary material at https://www.scitation.org/doi/suppl/10.1121/10.0006237 for the resonance frequency and dispersion relation with the height of the cylinder.
29.
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
, “
Acoustic resonators for far-field control of sound on a subwavelength scale
,”
Phys. Rev. Lett.
107
(
6
),
064301
(
2011
).
30.
N.
Korozlu
,
O. A.
Kaya
,
A.
Cicek
, and
B.
Ulug
, “
Self-collimation and slow-sound effect of spoof surface acoustic waves
,”
J. Appl. Phys.
125
(
7
),
074901
(
2019
).
31.
S.
Xie
,
S.
Ouyang
,
Z.
He
,
X.
Wang
,
K.
Deng
, and
H.
Zhao
, “
Bending and splitting of spoof surface acoustic waves through structured rigid surface
,”
Results Phys.
8
,
52
56
(
2018
).
32.
H.
Jia
,
M.
Lu
,
Q.
Wang
,
M.
Bao
, and
X.
Li
, “
Subwavelength imaging through spoof surface acoustic waves on a two-dimensional structured rigid surface
,”
Appl. Phys. Lett.
103
(
10
),
103505
(
2013
).
33.
N.
Cselyuszka
,
A.
Alù
, and
N.
Janković
, “
Spoof-fluid-spoof acoustic waveguide and its applications for sound manipulation
,”
Phys. Rev. Appl.
12
(
5
),
054014
(
2019
).
34.
J.
Christensen
,
A. I.
Fernandez-Dominguez
,
F.
de Leon-Perez
,
L.
Martin-Moreno
, and
F. J.
Garcia-Vidal
, “
Collimation of sound assisted by acoustic surface waves
,”
Nat. Phys.
3
(
12
),
851
852
(
2007
).
35.
M.
Notomi
, “
Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap
,”
Phys. Rev. B
62
(
16
),
10696
10705
(
2000
).
36.
P. A.
Belov
,
C. R.
Simovski
, and
P.
Ikonen
, “
Canalization of subwavelength images by electromagnetic crystals
,”
Phys. Rev. B
71
(
19
),
193105
(
2005
).

Supplementary Material

You do not currently have access to this content.