The acoustic field of high-speed turbulent jets is dominated by a small number of low-wavenumber azimuthal Fourier modes. Accordingly, it is of interest to directly obtain individual azimuthal modes of the acoustic field from simulation data or models of the jet near-field. To this end, we manipulate the Ffowcs Williams and Hawkings (FW–H) equation to obtain a new formulation that lives entirely in the azimuthal Fourier domain—it delivers individual azimuthal modes of the acoustic field as a function of the same azimuthal modes of the near-field FW–H source term or, upon linearization of the source terms, as a function of the same azimuthal modes of the near-field flow variables. As an added benefit, all surface integrals are converted into line integrals in the streamwise–radial plane. After verifying and validating our formulation using a monopole problem with an exact solution and large-eddy simulation data, respectively, we show how our method can be used to efficiently and naturally compute the acoustic field associated with resolvent modes of a Mach 1.5 jet, thus avoiding the need to compute the modes on a large computational domain to capture their acoustic radiation.

1.
Basner
,
M.
,
Clark
,
C.
,
Hansell
,
A.
,
Hileman
,
J. I.
,
Janssen
,
S.
,
Shepherd
,
K.
, and
Sparrow
,
V.
(
2017
). “
Aviation noise impacts: State of the science
,”
Noise Health
19
(
87
),
41
50
.
2.
Brès
,
G. A.
,
Ham
,
F. E.
,
Nichols
,
J. W.
, and
Lele
,
S. K.
(
2017
). “
Unstructured large-eddy simulations of supersonic jets
,”
AIAA J.
55
(
4
),
1164
1184
.
3.
Brès
,
G. A.
,
Jaunet
,
V.
,
Le Rallic
,
M.
,
Jordan
,
P.
,
Towne
,
A.
,
Schmidt
,
O.
,
Colonius
,
T.
,
Cavalieri
,
A. V.
, and
Lele
,
S. K.
(
2016
). “
Large eddy simulation for jet noise: Azimuthal decomposition and intermittency of the radiated sound
,” in
Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference
, May 30–June 1, Lyon, France, AIAA Paper 2016-3050.
4.
Brès
,
G. A.
,
Jordan
,
P.
,
Jaunet
,
V.
,
Le Rallic
,
M.
,
Cavalieri
,
A. V. G.
,
Towne
,
A.
,
Lele
,
S. K.
,
Colonius
,
T.
, and
Schmidt
,
O. T.
(
2018
). “
Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets
,”
J. Fluid Mech.
851
,
83
124
.
5.
Brès
,
G. A.
, and
Lele
,
S. K.
(
2019
). “
Modelling of jet noise: A perspective from large-eddy simulations
,”
Philos. Trans. R. Soc. A
377
(
2159
),
20190081
.
6.
Cavalieri
,
A. V. G.
,
Jordan
,
P.
,
Colonius
,
T.
, and
Gervais
,
Y.
(
2012
). “
Axisymmetric superdirectivity in subsonic jets
,”
J. Fluid Mech.
704
,
388
420
.
7.
Cavalieri
,
A. V. G.
,
Jordan
,
P.
, and
Lesshafft
,
L.
(
2019
). “
Wave-packet models for jet dynamics and sound radiation
,”
Appl. Mech. Rev.
71
(
2
),
020802
.
8.
Conway
,
J. T.
, and
Cohl
,
H. S.
(
2010
). “
Exact Fourier expansion in cylindrical coordinates for the three-dimensional Helmholtz green function
,”
Z. Angew. Math. Phys.
61
(
3
),
425
443
.
9.
Crighton
,
D. G.
, and
Gaster
,
M.
(
1976
). “
Stability of slowly diverging jet flow
,”
J. Fluid Mech.
77
,
397
413
.
10.
Edgington-Mitchell
,
D.
,
Wang
,
T.
,
Nogueira
,
P.
,
Schmidt
,
O.
,
Jaunet
,
V.
,
Duke
,
D.
,
Jordan
,
P.
, and
Towne
,
A.
(
2020
). “
Waves in screeching jets
,” arXiv:2008.09756.
11.
Ewert
,
R.
, and
Schröder
,
W.
(
2003
). “
Acoustic perturbation equations based on flow decomposition via source filtering
,”
J. Comput. Phys.
188
(
2
),
365
398
.
12.
Ffowcs Williams
,
J. E.
, and
Hawkings
,
D. L.
(
1969
). “
Sound generation by turbulence and surfaces in arbitrary motion
,”
Philos. Trans. R. Soc. A
264
(
1151
),
321
342
.
13.
Garnaud
,
X.
,
Sandberg
,
R. D.
, and
Lesshafft
,
L.
(
2013
). “
Global response to forcing in a subsonic jet: Instability wavepackets and acoustic radiation
,” in
Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference
, May 27–29, Berlin, Germany, AIAA Paper 2013-2232.
14.
Gudmundsson
,
K.
, and
Colonius
,
T.
(
2011
). “
Instability wave models for the near-field fluctuations of turbulent jets
,”
J. Fluid Mech.
689
,
97
128
.
15.
Jeun
,
J.
, and
Nichols
,
J. W.
(
2018
). “
Input-output analysis of Mach 0.9 jet noise
,” arXiv:1806.09280.
16.
Jeun
,
J.
,
Nichols
,
J. W.
, and
Jovanović
,
M. R.
(
2016
). “
Input-output analysis of high-speed axisymmetric isothermal jet noise
,”
Phys. Fluids
28
(
4
),
047101
.
17.
Jordan
,
P.
, and
Colonius
,
T.
(
2013
). “
Wave packets and turbulent jet noise
,”
Annu. Rev. Fluid Mech.
45
(
1
),
173
195
.
18.
Juve
,
D.
,
Sunyach
,
M.
, and
Comte-Bellot
,
G.
(
1979
). “
Filtered azimuthal correlations in the acoustic far field of a subsonic jet
,”
AIAA J.
17
(
1
),
112
113
.
19.
Kopiev
,
V.
,
Chernyshev
,
S.
,
Faranosov
,
G.
,
Zaitsev
,
M.
, and
Belyaev
,
I.
(
2010
). “
Correlations of jet noise azimuthal components and their role in source identification
,” in
Proceedings of the 16th AIAA/CEAS Aeroacoustics Conference
, June 7–9, Stockholm, Sweden, AIAA Paper 2010-40182.
20.
Lesshafft
,
L.
,
Semeraro
,
O.
,
Jaunet
,
V.
,
Cavalieri
,
A.
, and
Jordan
,
P.
(
2019
). “
Resolvent-based modeling of coherent wave packets in a turbulent jet
,”
Phys. Rev. Fluids
4
(
6
),
063901
.
21.
Lighthill
,
M. J.
(
1952
). “
On sound generated aerodynamically. I. General theory
,”
Proc. R. Soc. London Ser. A
211
(
1107
),
564
587
.
22.
Lighthill
,
M. J.
(
1954
). “
On sound generated aerodynamically. II. Turbulence as a source of sound
,”
Proc. R. Soc. London Ser. A
222
(
1148
),
1
32
.
23.
Lockard
,
D. P.
(
2000
). “
An efficient, two-dimensional implementation of the Ffowcs Williams and Hawkings equation
,”
J. Sound Vib.
229
(
4
),
897
911
.
24.
Lockard
,
D.
(
2002
). “
A comparison of Ffowcs Williams–Hawkings solvers for airframe noise applications
,” in
Proceedings of the 8th AIAA/CEAS Aeroacoustics Conference and Exhibit
, June 17–19, Breckenridge, CO, AIAA Paper 2002-2580.
25.
Lyrintzis
,
A. S.
(
1994
). “
The use of Kirchhoff's method in computational aeroacoustics
,”
J. Fluids Eng.
116
(
4
),
665
676
.
26.
Lyrintzis
,
A. S.
(
2003
). “
Surface integral methods in computational aeroacoustics—from the (CFD) near-field to the (acoustic) far-field
,”
Int. J. Aeroacoust.
2
,
95
128
.
27.
Lyrintzis
,
A. S.
, and
Coderoni
,
M.
(
2020
). “
Overview of the use of large-eddy simulations in jet aeroacoustics
,”
AIAA J.
58
,
1620
1638
.
28.
Maia
,
I. A.
,
Jordan
,
P.
,
Cavalieri
,
A. V. G.
, and
Jaunet
,
V.
(
2019
). “
Two-point wavepacket modelling of jet noise
,”
Proc. R. Soc. A
475
(
2227
),
20190199
.
29.
Martini
,
E.
,
Cavalieri
,
A. V.
,
Jordan
,
P.
,
Towne
,
A.
, and
Lesshafft
,
L.
(
2020a
). “
Resolvent-based optimal estimation of transitional and turbulent flows
,”
J. Fluid Mech.
900
,
A2
.
30.
Martini
,
E.
,
Rodríguez
,
D.
,
Towne
,
A.
, and
Cavalieri
,
A. V.
(
2020b
). “
Efficient computation of global resolvent modes
,” arXiv:2008.10904.
31.
Mattingly
,
G. E.
, and
Chang
,
C. C.
(
1974
). “
Unstable waves on an axisymmetric jet column
,”
J. Fluid Mech.
65
,
541
560
.
32.
Mattsson
,
K.
, and
Nordström
,
J.
(
2004
). “
Summation by parts operators for finite difference approximations of second derivatives
,”
J. Comput. Phys.
199
(
2
),
503
540
.
33.
McKeon
,
B. J.
, and
Sharma
,
A. S.
(
2010
). “
A critical-layer framework for turbulent pipe flow
,”
J. Fluid Mech.
658
,
336
382
.
34.
Mendez
,
S.
,
Shoeybi
,
M.
,
Lele
,
S. K.
, and
Moin
,
P.
(
2013
). “
On the use of the Ffowcs Williams–Hawkings equation to predict far-field jet noise from large-eddy simulations
,”
Int. J. Aeroacoust.
12
(
1
),
1
20
.
35.
Mollo-Christensen
,
E.
(
1967
). “
Jet noise and shear flow instabilities seen from an experimenter's viewpoint
,”
J. Appl. Mech.
34
,
1
7
.
36.
Neifeld
,
A.
,
Ewert
,
R.
, and
Rose
,
M.
(
2012
). “
On the contribution of higher azimuthal modes to the near-and far-field of jet mixing noise
,” in
Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference)
, June 4–6, Colorado Springs, CO, AIAA Paper 2012-2114.
37.
Nichols
,
J.
, and
Lele
,
S.
(
2011
). “
Global modes and transient response of a cold supersonic jet
,”
J. Fluid Mech.
669
,
225
241
.
38.
Nitzkorski
,
Z.
, and
Mahesh
,
K.
(
2014
). “
A dynamic end cap technique for sound computation using the Ffowcs Williams and Hawkings equations
,”
Phys. Fluids
26
(
11
),
115101
.
39.
Nogueira
,
P.
,
Cavalieri
,
A.
,
Jordan
,
P.
, and
Jaunet
,
V.
(
2019
). “
Large-scale streaky structures in turbulent jets
,”
J. Fluid Mech.
873
,
211
237
.
40.
Pickering
,
E.
,
Rigas
,
G.
,
Nogueira
,
P.
,
Cavalieri
,
A.
,
Schmidt
,
O.
, and
Colonius
,
T.
(
2020a
). “
Lift-up, Kelvin-Helmholtz and Orr mechanisms in turbulent jets
,”
J. Fluid Mech.
896
,
A2
.
41.
Pickering
,
E.
,
Towne
,
A.
,
Jordan
,
P.
, and
Colonius
,
T.
(
2020b
). “
Resolvent-based jet noise models: A projection approach
,”
Proceedings of the AIAA Scitech 2020 Forum
, January 6–10, Orlando, FL, AIAA Paper 2020-0999.
42.
Pickering
,
E.
,
Towne
,
A.
,
Jordan
,
P.
, and
Colonius
,
T.
(
2021
). “
Resolvent-based modeling of turbulent jet noise
,” arXiv:2103.09421.
43.
Rahier
,
G.
,
Prieur
,
J.
,
Vuillot
,
F.
,
Lupoglazoff
,
N.
, and
Biancherin
,
A.
(
2004
). “
Investigation of integral surface formulations for acoustic post-processing of unsteady aerodynamic jet simulations
,”
Aerosp. Sci. Technol.
8
(
6
),
453
467
.
44.
Reba
,
R.
,
Narayanan
,
S.
, and
Colonius
,
T.
(
2010
). “
Wave-packet models for large-scale mixing noise
,”
Int. J. Aeroacoust.
9
(
4
),
533
557
.
45.
Ribeiro
,
J. H. M.
,
Yeh
,
C.-A.
, and
Taira
,
K.
(
2020
). “
Randomized resolvent analysis
,”
Phys. Rev. Fluids
5
(
3
),
033902
.
46.
Rigas
,
G.
,
Schmidt
,
O. T.
,
Colonius
,
T.
, and
Brès
,
G. A.
(
2017
). “
One way Navier-Stokes and resolvent analysis for modeling coherent structures in a supersonic turbulent jet
,”
Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference
, June 5–7, Denver, CO, AIAA Paper 2017-4046.
47.
Schmidt
,
O. T.
,
Towne
,
A.
,
Colonius
,
T.
,
Cavalieri
,
A. V. G.
,
Jordan
,
P.
, and
Brès
,
G. A.
(
2017
). “
Wavepackets and trapped acoustic modes in a turbulent jet: Coherent structure eduction and global stability
,”
J. Fluid Mech.
825
,
1153
1181
.
48.
Schmidt
,
O. T.
,
Towne
,
A.
,
Rigas
,
G.
,
Colonius
,
T.
, and
Brès
,
G. A.
(
2018
). “
Spectral analysis of jet turbulence
,”
J. Fluid Mech.
855
,
953
982
.
49.
Sinha
,
A.
,
Rodríguez
,
D.
,
Brès
,
G.
, and
Colonius
,
T.
(
2014
). “
Wavepacket models for supersonic jet noise
,”
J. Fluid Mech.
742
,
71
95
.
50.
Skelton
,
E. A.
(
1982
). “
Free-space Green's functions of the reduced wave equation
,” Technical Memo,
Admiralty Marine Technology Establishment
,
Teddington, UK
.
51.
Spalart
,
P. R.
, and
Shur
,
M. L.
(
2009
). “
Variants of the Ffowcs Williams–Hawkings equation and their coupling with simulations of hot jets
,”
Int. J. Aeroacoust.
8
(
5
),
477
491
.
52.
Suzuki
,
T.
, and
Colonius
,
T.
(
2006
). “
Instability waves in a subsonic round jet detected using a near-field phased microphone array
,”
J. Fluid Mech.
565
,
197
226
.
53.
Tam
,
C. K. W.
, and
Hu
,
F. Q.
(
1989
). “
On the three families of instability waves of high-speed jets
,”
J. Fluid Mech.
201
,
447
483
.
54.
Towne
,
A.
,
Cavalieri
,
A. V. G.
,
Jordan
,
P.
,
Colonius
,
T.
,
Schmidt
,
O.
,
Jaunet
,
V.
, and
Brès
,
G. A.
(
2017
). “
Acoustic resonance in the potential core of subsonic jets
,”
J. Fluid Mech.
825
,
1113
1152
.
55.
Towne
,
A.
, and
Colonius
,
T.
(
2015
). “
One-way spatial integration of hyperbolic equations
,”
J. Comput. Phys.
300
,
844
861
.
56.
Towne
,
A.
,
Lozano-Durán
,
A.
, and
Yang
,
X.
(
2020
). “
Resolvent-based estimation of space-time flow statistics
,”
J. Fluid Mech.
883
,
A17
.
57.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
(
2018
). “
Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
,”
J. Fluid Mech.
847
,
821
867
.
58.
Weckmüller
,
C.
,
Wellner
,
J.
,
Guerin
,
S.
, and
Michel
,
U.
(
2010
). “
Ffowcs Williams & Hawkings formulation for the convective wave equation and permeable data surface
,” in
Proceedings of the 16th AIAA/CEAS Aeroacoustics Conference
, June 7–9, Stockholm, Sweden, AIAA Paper 2010-3710.
59.
Wong
,
M. H.
,
Kirby
,
R.
,
Jordan
,
P.
, and
Edgington-Mitchell
,
D.
(
2020
). “
Azimuthal decomposition of the radiated noise from supersonic shock-containing jets
,”
J. Acoust. Soc. Am.
148
(
4
),
2015
2027
.
You do not currently have access to this content.