Beamforming is an imaging tool for the investigation of aeroacoustic phenomena and results in high-dimensional data that are broken down to spectra by integrating spatial regions of interest. This paper presents two methods that enable the automated identification of aeroacoustic sources in sparse beamforming maps and the extraction of their corresponding spectra to overcome the manual definition of regions of interest. The methods are evaluated on two scaled airframe half-model wind tunnel measurements and on a generic monopole source. The first relies on the spatial normal distribution of aeroacoustic broadband sources in sparse beamforming maps. The second uses hierarchical clustering methods. Both methods are robust to statistical noise and predict the existence, location, and spatial probability estimation for sources based on which regions of interest are automatically determined.

1.
Abramowitz
,
M.
(
1974
).
Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables
(
Dover Publications
,
New York
).
2.
Ahlefeldt
,
T.
(
2013
). “
Aeroacoustic measurements of a scaled half-model at high Reynolds numbers
,”
AIAA J.
51
(
12
),
2783
2791
.
3.
Ahlefeldt
,
T.
(
2017
). “
Microphone array measurement in European transonic wind-tunnel at flight Reynolds numbers
,”
AIAA J.
55
(
1
),
36
48
.
4.
Antoni
,
J.
(
2012
). “
A Bayesian approach to sound source reconstruction: Optimal basis, regularization, and focusing
,”
J. Acoust. Soc. Am.
131
(
4
),
2873
2890
.
5.
Bahr
,
C. J.
, and
Horne
,
W. C.
(
2015
). “
Advanced background subtraction applied to aeroacoustic wind tunnel testing
,” in
Proceedings of the 21st AIAA/CEAS Aeroacoustics Conference
, June 22–26, Dallas, TX.
6.
Bahr
,
C. J.
,
Humphreys
,
W. M.
,
Ernst
,
D.
,
Ahlefeldt
,
T.
,
Spehr
,
C.
,
Pereira
,
A.
,
Leclère
,
Q.
,
Picard
,
C.
,
Porteous
,
R.
,
Moreau
,
D.
,
Fischer
,
J. R.
, and
Doolan
,
C. J.
(
2017
). “
A comparison of microphone phased array methods applied to the study of airframe noise in wind-tunnel testing
,” in
Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference
, June 5–9, Denver, CO.
7.
Bianco
,
M. J.
,
Gerstoft
,
P.
,
Traer
,
J.
,
Ozanich
,
E.
,
Roch
,
M. A.
,
Gannot
,
S.
, and
Deledalle
,
C. A.
(
2019
). “
Machine learning in acoustics: Theory and applications
,”
J. Acoust. Soc. Am.
146
(
5
),
3590
3628
.
8.
Blacodon
,
D.
(
2011
). “
Array processing for noisy data: Application for open and closed wind-tunnels
,”
AIAA J.
49
(
1
),
55
66
.
9.
Campello
,
R. J. G. B.
,
Moulavi
,
D.
, and
Sander
,
J.
(
2013
). “
Density-based clustering based on hierarchical density estimates
,” in
Advances in Knowledge Discovery and Data Mining
(
Springer
,
Berlin
).
10.
Dobrzynski
,
W.
(
2010
). “
Almost 40 years of airframe noise research: What did we achieve?
,”
J. Aircraft
47
(
2
),
353
367
.
11.
Dobrzynski
,
W.
, and
Pott-Pollenske
,
M.
(
2001
). “
Slat noise source studies for farfield noise prediction
,” in
Proceedings of the 7th AIAA/CEAS Aeroacoustics Conference and Exhibit
, May 28–30, Maastricht, Netherlands.
12.
Dong
,
B.
,
Antoni
,
J.
,
Pereira
,
A.
, and
Kellermann
,
W.
(
2016
). “
Blind separation of incoherent and spatially disjoint sound sources
,”
J. Sound Vib.
383
,
414
445
.
13.
Dong
,
B.
,
Antoni
,
J.
, and
Zhang
,
E.
(
2014
). “
Blind separation of sound sources from the principle of least spatial entropy
,”
J. Sound Vib.
333
(
9
),
2643
2668
.
14.
Ernst
,
D.
(
2020
). “
Akustischer Kohärenzverlust in Offenen Windkanälen Aufgrund Der Turbulenten Scherschicht” (“Acoustic coherence loss in open wind tunnels due to the turbulent shear layer”)
, Ph.D. thesis,
Technische Universität Berlin
.
15.
Goudarzi
,
A.
,
Spehr
,
C.
, and
Herbold
,
S.
(
2020
). “
Expert decision support system for aeroacoustic classification from deconvolved beamforming maps
,” in
Proceedings of the AIAA Aviation 2020 Forum
, June 15–19.
16.
Guo
,
Y. P.
, and
Joshi
,
M. C.
(
2003
). “
Noise characteristics of aircraft high lift systems
,”
AIAA J.
41
(
7
),
1247
1256
.
17.
Howe
,
M. S.
(
1982
). “
On the generation of side-edge flap noise
,”
J. Sound Vib.
80
(
4
),
555
573
.
18.
Howe
,
M. S.
(
2007
).
Hydrodynamics and Sound
(
Cambridge University
,
Cambridge, UK
).
19.
McInnes
,
L.
,
Healy
,
J.
, and
Astels
,
S.
(
2017
). “
hdbscan: Hierarchical density based clustering
,”
J. Open Source Softw.
2
(
11
),
205
.
20.
Merino-Martínez
,
R.
,
Sijtsma
,
P.
,
Rubio Carpio
,
A.
,
Zamponi
,
R.
,
Luesutthiviboon
,
S.
,
Malgoezar
,
A.
,
Snellen
,
M.
,
Schram
,
C.
, and
Simons
,
D.
(
2019a
). “
Integration methods for distributed sound sources
,”
Int. J. Aeroacoust.
18
,
444
469
.
21.
Merino-Martínez
,
R.
,
Sijtsma
,
P.
,
Snellen
,
M.
,
Ahlefeldt
,
T.
,
Antoni
,
J.
,
Bahr
,
C. J.
,
Blacodon
,
D.
,
Ernst
,
D.
,
Finez
,
A.
,
Funke
,
S.
,
Geyer
,
T. F.
,
Haxter
,
S.
,
Herold
,
G.
,
Huang
,
X.
,
Humphreys
,
W. M.
,
Leclère
,
Q.
,
Malgoezar
,
A.
,
Michel
,
U.
,
Padois
,
T.
,
Pereira
,
A.
,
Picard
,
C.
,
Sarradj
,
E.
,
Siller
,
H.
,
Simons
,
D. G.
, and
Spehr
,
C.
(
2019b
). “
A review of acoustic imaging methods using phased microphone arrays
,”
CEAS Aeronaut. J.
10
(
1
),
197
230
.
22.
Müller
,
E.-A.
(
1979
).
Mechanics of Sound Generation in Flows: IUTAM Symposium
(
Springer-Verlag
,
Berlin
).
23.
Schwarz
,
G.
(
1978
). “
Estimating the dimension of a model
,”
Ann. Stat.
6
(
2
),
461
464
.
24.
Sijtsma
,
P.
(
2004
). “
Experimental techniques for identification and characterisation of noise sources
,”
Technical Report NLR-TP-2004-165
(
National Aerospace Laboratory NLR
,
Amsterdam, Netherlands
).
25.
Sijtsma
,
P.
(
2007
). “
Clean based on spatial source coherence
,”
Int. J. Aeroacoust.
6
,
357
374
.
26.
Zhang
,
E.
,
Antoni
,
J.
,
Dong
,
B.
, and
Snoussi
,
H.
(
2012
). “
Bayesian space-frequency separation of wide-band sound sources by a hierarchical approach
,”
J. Acoust. Soc. Am.
132
(
5
),
3240
3250
.
You do not currently have access to this content.