A Bayesian method to remove correlated noise from multi-channel measurements is introduced. It is based on Bayesian factor analysis coupled with prior but uncertain knowledge of the correlation structure of the noise. This technique is well suited to denoise cross-spectral matrices measured in the frame of aeroacoustic experiments when background noise measurements are available, because it allows separating the engine noise contribution from the turbulent boundary layer and uniform noise components that are all sensed by in-flow microphones. In-flight data measured on flush-mounted microphones on an aircraft fuselage are denoised using this method. It is shown that it has a significant benefit for studying the broadband shock-associated noise generated by the engines in realistic flight conditions.

1.
J.
Chung
, “
Rejection of flow noise using a coherence function method
,”
J. Acoust. Soc. Am.
62
(
2
),
388
395
(
1977
).
2.
R.
Schmidt
, “
Multiple emitter location and signal parameter estimation
,”
IEEE Trans. Antennas Propag.
34
(
3
),
276
280
(
1986
).
3.
Q.
Leclère
,
N.
Totaro
,
C.
Pezerat
,
F.
Chevillotte
, and
P.
Souchotte
, “
Extraction of the acoustic part of a turbulent boundary layer from wall pressure and vibration measurements
,” in
Proceedings of the International Congress on Noise and Vibration Emerging Methods
, Dubrovnik, Croatia (April 13–15,
2015
).
4.
R.
Dougherty
, “
Cross spectral matrix diagonal optimization
,” in
Proceedings of the 6th Berlin Beamforming Conference
, Berlin, Germany (February 24–25,
2016
).
5.
J.
Hald
, “
Removal of incoherent noise from an averaged cross-spectral matrix
,”
J. Acoust. Soc. Am.
142
(
2
),
846
854
(
2017
).
6.
A.
Dinsenmeyer
,
J.
Antoni
,
Q.
Leclère
, and
A.
Pereira
, “
A probabilistic approach for cross-spectral matrix denoising: Benchmarking with some recent methods
,”
J. Acoust. Soc. Am.
147
(
5
),
3108
3123
(
2020
).
7.
S.
Amailland
,
J.-H.
Thomas
,
C.
Pézerat
, and
R.
Boucheron
, “
Boundary layer noise subtraction in hydrodynamic tunnel using robust principal component analysis
,”
J. Acoust. Soc. Am.
143
(
4
),
2152
2163
(
2018
).
8.
J.
Hald
, “
Denoising of cross-spectral matrices using canonical coherence
,”
J. Acoust. Soc. Am.
146
(
1
),
399
408
(
2019
).
9.
I.
Davis
and
G.
Bennett
, “
Experimental investigations of coherence based noise source identification techniques for turbomachinery applications—Classic and novel techniques
,” in
Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference)
, Portland, OR (June 5–8,
2011
).
10.
J.
Bendat
and
A.
Piersol
,
Engineering Applications of Correlation and Spectral Analysis
(
Wiley-Interscience
,
New York
,
1980
), p.
302
.
11.
J.
Huber
,
K.
Britchford
,
E.
Laurendeau
,
V.
Fleury
,
J.
Bulté
,
A.
Sylla
, and
D.
Long
, “
Understanding and reduction of cruise jet noise at model and full scale
,” in
Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference)
, Miami, FL (May 11–13,
2009
).
12.
C. J.
Bahr
and
W. C.
Horne
, “
Subspace-based background subtraction applied to aeroacoustic wind tunnel testing
,”
Int. J. Aeroacoust.
16
(
4
),
299
325
(
2017
).
13.
D.
Blacodon
, “
Spectral estimation method for noisy data using a noise reference
,”
Appl. Acoust.
72
(
1
),
11
21
(
2011
).
14.
J.
Bulté
, “
Acoustic array measurements in aerodynamic wind tunnels: A subspace approach for noise suppression
,” in
Proceedings of the 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference)
, Rome, Italy (May 21–23,
2007
).
15.
P.
Sijtsma
,
A.
Dinsenmeyer
,
J.
Antoni
, and, and
Q.
Leclere
, “
Beamforming and other methods for denoising microphone array data
,” in
Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference
, Delft, Netherlands (May 20–23,
2019
).
16.
A.
Dinsenmeyer
,
Q.
Leclere
, and
J.
Antoni
, “
Separation of the acoustic and aerodynamic wall pressure fluctuations
,” in
Proceedings of Forum Acusticum 2020
, Lyon, France (December 7–11,
2020
).
17.
J.
Antoni
,
C.
Vanwynsberghe
,
T.
Le Magueresse
,
S.
Bouley
, and
L.
Gilquin
, “
Mapping uncertainties involved in sound source reconstruction with a cross-spectral-matrix-based Gibbs sampler
,”
J. Acoust. Soc. Am.
146
(
6
),
4947
4961
(
2019
).
18.
C. M.
Bishop
,
Pattern Recognition and Machine Learning
(
Springer
,
Berlin
,
2006
), pp.
102
103
.
19.
D.
Gamerman
and
H. F.
Lopes
,
Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference
(
Chapman and Hall/CRC
,
Boca Raton, FL
,
2006
), pp.
191
198
.
20.
D. T.
Pham
, “
Joint approximate diagonalization of positive definite Hermitian matrices
,”
SIAM J. Matrix Anal. Appl.
22
(
4
),
1136
1152
(
2001
).
21.
See supplementary materials at https://www.scitation.org/doi/suppl/10.1121/10.0006107 for the expression of posterior laws and implementation of the Metropolis–Hastings algorithm.
22.
D. J.
Earl
and
M. W.
Deem
, “
Parallel tempering: Theory, applications, and new perspectives
,”
Phys. Chem. Chem. Phys.
7
(
23
),
3910
3916
(
2005
).
23.
E.
Helffer
, “
From external to internal noise on airbus A350
,” in
Proceedings of the 25th International Conference on Sound and Vibrations
, Hiroshima, Japan (July 8–12,
2018
).
24.
Q.
Leclere
,
J.
Antoni
,
E.
Julliard
, and
A.
Pintado-Peno
, “
Consideration of estimation error in multiple coherence approaches application to the inside/outside coherence analysis of aircraft flight tests
,” in
Proceedings of the International Conference on Noise and Vibration Engineering (ISMA2018)
, Leuven, Belgium (September 17–19,
2018
).
25.
D.
Juvé
,
M.
Berton
, and
E.
Salze
, “
Spectral properties of wall-pressure fluctuations and their estimation from computational fluid dynamics
,” in
Flinovia-Flow Induced Noise and Vibration Issues and Aspects
(
Springer
,
New York
,
2015
), pp.
27
46
.
26.
ARP876F
:
Gas Turbine Jet Exhaust Noise Prediction
(
SAE International
,
Warrendale, PA
,
2013
).
27.
J.
Antoni
, “
A Bayesian approach to sound source reconstruction: Optimal basis, regularization, and focusing
,”
J. Acoust. Soc. Am.
131
(
4
),
2873
2890
(
2012
).
28.
C. K.
Tam
and
H.
Tanna
, “
Shock associated noise of supersonic jets from convergent-divergent nozzles
,”
J. Sound Vib.
81
(
3
),
337
358
(
1982
).
29.
C. K.
Tam
, “
Supersonic jet noise
,”
Annu. Rev. Fluid Mech.
27
(
1
),
17
43
(
1995
).

Supplementary Material

You do not currently have access to this content.