This article derives the radiation impedance for two parallel pistons in two different configurations: baffled and unbaffled. For the former, the cylindrical system of coordinates is adapted to compute the self and mutual impedance of a piston between perfectly rigid infinite parallel planes. For the latter, spheroidal coordinates are used and declined for the case of two disks in free-space. The formulae for Green's function that respects Neumann boundary conditions are established in both configurations in order to compute the pressure field using the Huygens-Fresnel principle. Contrasting with the radiation impedance obtained for one single radiator, both systems exhibit resonant frequencies. The result of this study, validated in each case by a numerical method, can be used to predict the acoustic interaction of two vibrating systems for which their radiation surfaces are facing each other.

1.
V.
Doutaut
,
D.
Matignon
, and
A.
Chaigne
, “
Numerical simulations of xylophones. ii. time-domain modeling of the resonator and of the radiated sound pressure
,”
J. Acoust. Soc. Am.
104
(
3
),
1633
1647
(
1998
).
2.
M.
Junger
, “
Sound radiation by resonances of free-free beams
,”
J. Acoust. Soc. Am.
52
(
1B
),
332
334
(
1972
).
3.
I.
Bork
, “
Practical tuning of xylophone bars and resonators
,”
Appl. Acoust.
46
(
1
),
103
127
(
1995
).
4.
P.
Rucz
,
M.Á.
Ulveczki
,
J.
Angster
, and
A.
Miklós
, “
Simulation of mallet percussion instruments by a coupled modal vibroacoustic finite element model
,”
J. Acoust. Soc. Am.
149
(
5
),
3200
3212
(
2021
).
5.
T. A.
Johansson
and
M.
Kleiner
, “
Theory and experiments on the coupling of two Helmholtz resonators
,”
J. Acoust. Soc. Am.
110
(
3
),
1315
1328
(
2001
).
6.
E. M.
Arase
, “
Mutual radiation impedance of square and rectangular piston in a rigid baffle
,”
J. Acoust. Soc. Am.
36
,
1521
1525
(
1964
).
7.
R.
Pritchard
, “
Mutual acoustic impedance between radiators in an infinite rigid plane
,”
J. Acoust. Soc. Am.
32
(
6
),
730
737
(
1960
).
8.
K.
Sha
,
J.
Yang
, and
W.-S.
Gan
, “
A simple calculation method for the self-and mutual-radiation impedance of flexible rectangular patches in a rigid infinite baffle
,”
J. Sound Vib.
282
(
1–2
),
179
195
(
2005
).
9.
P.
Stepanishen
, “
Evaluation of mutual radiation impedances between circular pistons by impulse response and asymptotic methods
,”
J. Sound Vib.
59
(
2
),
221
235
(
1978
).
10.
M.
Bruneau
,
Fundamentals of Acoustics
(
John Wiley & Sons
,
New York
,
2013
).
11.
T.
Hélie
and
X.
Rodet
, “
Radiation of a pulsating portion of a sphere: Application to horn radiation
,”
Acta Acust. united Ac.
89
(
4
),
565
577
(
2003
).
12.
A.
Lefebvre
,
G. P.
Scavone
, and
J.
Kergomard
, “
External tonehole interactions in woodwind instruments
,”
Acta Acust. united Ac.
99
(
6
),
975
985
(
2013
).
13.
J.-P.
Dalmont
,
C. J.
Nederveen
, and
N.
Joly
, “
Radiation impedance of tubes with different flanges: Numerical and experimental investigations
,”
J. Sound Vib.
244
(
3
),
505
534
(
2001
).
14.
P.
Rucz
, “
A finite element approach for the calculation of self and mutual radiation impedances of resonators
,”
J. Acoust. Soc. Am.
143
(
4
),
2449
2459
(
2018
).
15.
E. A.
Skelton
, “
Free-space Green's functions of the reduced wave equation
,” Technical Memo (
Admiralty Marine Technology Establishment
,
Teddington, UK
,
1982
).
16.
S.
Kirkup
, “
The boundary element method in acoustics: A survey
,”
Appl. Sci.
9
(
8
),
1642
1690
. (
2019
).
17.
A.
Van Buren
and
B.
King
, “
Acoustic radiation from two spheroids
,”
J. Acoust. Soc. Am.
52
(
1B
),
364
372
(
1972
).
18.
B.
King
and
A.
Van Buren
, “
Fortran computer programs for calculating the axisymmetric acoustic radiation from two coaxial spheroids
,” Technical Report (
Naval Research Lab
,
Washington, DC
,
1974
).
19.
N.
Baddour
, “
Multidimensional wave field signal theory: Mathematical foundations
,”
AIP Adv.
1
(
2
),
022120
(
2011
).
20.
T.
Mellow
and
L.
Kärkkäinen
, “
On the sound field of an oscillating disk in a finite open and closed circular baffle
,”
J. Acoust. Soc. Am.
118
(
3
),
1311
1325
(
2005
).
21.
E.
Skelton
, “
Green's functions of the reduced wave equation between parallel planes
,” Technical Memo (
Admiralty Marine Technology Establishment
,
Teddington, UK
,
1985
).
22.
W.
Rosenheinrich
, “
Tables of some indefinite integrals of Bessel functions
,” (
University of Applied Sciences
,
Jena, Germany
,
2012
).
23.
C.
Bouwkamp
, “
Theoretical and numerical treatment of diffraction through a circular aperture
,”
IEEE Trans. Antennas Propag.
18
(
2
),
152
176
(
1970
).
24.
T.
Mellow
, “
On the sound field of a resilient disk in free space
,”
J. Acoust. Soc. Am.
123
(
4
),
1880
1891
(
2008
).
25.
P. E.
Falloon
,
P.
Abbott
, and
J.
Wang
, “
Theory and computation of spheroidal wavefunctions
,”
J. Phys. A: Math. General
36
(
20
),
5477
5503
(
2003
).
26.
J.
Meixner
and
F. W.
Schäfke
, “
Mathieu Sphäroidfunktionen
” (“Mathieu spheroidal functions”), in
Mathieusche Funktionen und Sphäroidfunktionen (Mathieu Functions and Spheroidal Functions)
(
Springer
,
New York
,
1954
), pp.
98
221
.
27.
C.
Flammer
,
Spheroidal Wave Functions
(
Courier Corporation
,
North Chelmsford, MA
,
2014
).
28.
J.
Boisvert
and
A.
Van Buren
, “
Accurate calculation of prolate spheroidal radial functions of the first kind and their derivatives
,”
Q. Appl. Math.
60
,
589
599
(
2002
).
29.
R.
Adelman
,
N. A.
Gumerov
, and
R.
Duraiswami
, “
Semi-analytical computation of acoustic scattering by spheroids and disks
,”
J. Acoust. Soc. Am.
136
(
6
),
EL405
EL410
(
2014
).
30.
R.
Adelman
,
N. A.
Gumerov
, and
R.
Duraiswami
, “
Software for computing the spheroidal wave functions using arbitrary precision arithmetic
,” arXiv:1408.0074 (
2014
).
31.
J.
Jin
and
Z. S.
Jjie
,
Computation of Special Functions
(
Wiley
,
New York
,
1996
).
32.
A.
Van Buren
, “
Mathieu and spheroidal wave functions fortran programs for their accurate calculation
,” http://mathieuandspheroidalwavefunctions.com/ (Last viewed May 9,
2021
).
33.
P.
Morse
and
H.
Feshbach
,
Methods of Theoretical Physics Part I and II
(
McGraw-Hill, Inc
.,
New York
,
1953
).
34.
J.
Dalmas
and
R.
Deleuil
, “
Translational addition theorems for prolate spheroidal vector wave functions Mr and
Nr,”
Quart. Appl. Math.
44
(
2
),
213
222
(
1986
).
35.
M.
Aussal
, “
Openhmx, an open-source h-matrix toolbox in matlab
,” in
Proceedings of Waves 2017
,
Minneapolis, MN
(
May 15–19
,
2017
).
36.
I.
Terrasse
and
T.
Abboud
,
Modélisation des Phénomènes de propagation D'ondes (Modeling of Waves Propagation Phenomena)
(
École Polytechnique
,
Palaiseau, France
,
2007
).
37.
M.
Aussal
, “
The gypsilab open-source matlab toolbox
,” https://github.com/matthieuaussal/gypsilab/tree/master/nonRegressionTest/radiationImpedances (Last viewed July 23,
2021
).
38.
O. R.
Cruzan
, “
Translational addition theorems for spherical vector wave functions
,”
Q. Appl. Math.
20
(
1
),
33
40
(
1962
).
You do not currently have access to this content.