One of the main fields of application of personal sound zones (PSZs) is the car industry. PSZ systems are usually designed assuming that the acoustic environment is not changing. However, due to variability in the car cabin's acoustic conditions, it is necessary to design a system capable of adapting to these variations. This paper introduces the use of the filtered-x least-mean-squares algorithm to adapt a PSZ system in a car cabin when the seat positions change. The article focuses on four aspects. First, the effect of the initial coefficients is investigated to help with the convergence of the adaptive algorithm. Second, a study is made on the definition of the desired pressure and its effect on the reproduction. Third, the system's sensitivity to external noise is also evaluated. Last, the possibility to reduce the number of microphones for the adaptive system is considered. The method's performance is evaluated using a two headrest system installed in a car cabin and when moving the seats to different positions. It is shown that the system is capable of maintaining the performance in the different seat positions.

1.
W. F.
Druyvesteyn
and
J.
Garas
, “
Personal sound
,”
J. Audio Eng. Soc.
45
(
9
),
685
701
(
1997
).
2.
C.
House
,
S.
Dennison
,
D. G.
Morgan
,
N.
Rushton
,
G. V.
White
,
J.
Cheer
, and
S.
Elliott
, “
Personal spatial audio in cars: Development of a loudspeaker array for multi-listener transaural reproduction in a vehicle
,” in
Proceedings of the Institute of Acoustics
(
2017
). Vol.
39
.
3.
F.
Olivieri
,
F. M.
Fazi
,
P. A.
Nelson
, and
S.
Fontana
, “
Comparison of strategies for accurate reproduction of a target signal with compact arrays of loudspeakers for the generation of zones of private sound and silence
,”
J. Audio Eng. Soc.
64
(
11
),
905
917
(
2016
).
4.
J.-W.
Choi
and
Y.-H.
Kim
, “
Generation of an acoustically bright zone with an illuminated region using multiple sources
,”
J. Acoust. Soc. Am.
111
(
4
),
1695
1700
(
2002
).
5.
M. B.
Moller
and
J.
Ostergaard
, “
A moving horizon framework for sound zones
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
28
,
256
265
(
2020
).
6.
J.
Rämö
,
S.
Bech
, and
S.
Jensen
, “
Validating a real-time perceptual model predicting distraction caused by audio-on-audio interference
,”
J. Acoust. Soc. Am.
144
(
1
),
153
163
(
2018
).
7.
K.
Baykaner
,
P.
Coleman
,
R.
Mason
,
P.
Jackson
,
J.
Francombe
,
O.
Marek
, and
S.
Bech
, “
The relationship between target quality and interference in sound zone
,”
J. Audio Eng. Soc.
63
(
1
),
78
79
(
2015
).
8.
J.
Cheer
,
S. J.
Elliott
, and
M. F. S.
Gálvez
, “
Design and implementation of a car cabin personal audio system
,”
J. Audio Eng. Soc.
61
(
6
),
412
424
(
2013
).
9.
M. F.
Simón Gálvez
,
S. J.
Elliott
, and
J.
Cheer
, “
Time domain optimization of filters used in a loudspeaker array for personal audio
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
23
(
11
),
1869
1878
(
2015
).
10.
X.
Liao
,
J.
Cheer
,
S.
Elliott
, and
S.
Zheng
, “
Design of a loudspeaker array for personal audio in a car cabin
,”
J. Audio Eng. Soc.
65
(
3
),
226
238
(
2017
).
11.
M.
Poletti
, “
An investigation of 2D multizone surround sound systems
,”
Proceedings of the 125th AES Convention
, San Francisco, CA (October 2–5,
2008
).
12.
J.-H.
Chang
and
F.
Jacobsen
, “
Sound field control with a circular double-layer array of loudspeakers
,”
J. Acoust. Soc. Am.
131
(
6
),
4518
4525
(
2012
).
13.
M. B.
Møller
and
M.
Olsen
, “
Sound zones: On performance prediction of contrast control methods
,”
Proceedings of the 2016 AES International Conference on Sound Field Control
, Guildford, UK (July 18–20,
2016
).
14.
N.
Yanagidate
,
J.
Cheer
,
S.
Elliott
, and
T.
Toi
, “
Car cabin personal audio: Acoustic contrast with limited sound differences
,”
Proceedings of the 55th AES International Conference on Spatial Audio
, Helsinki, Finland (August 27–29,
2014
).
15.
J.
Cheer
, “
Active control of the acoustic environment in an automobile cabin
,” Ph.D. thesis,
Southampton University
,
Southampton, UK
,
2012
.
16.
L.
Vindrola
,
M.
Melon
,
J.-C.
Chamard
,
B.
Gazengel
, and
G.
Plantier
, “
Personal sound zones: A comparison between frequency and time domain formulations in a transportation context
,”
Proceedings of the 147th Convention of the Audio Engineering Society
, New York (October 16–19,
2019
).
17.
M.
Olsen
and
M. B.
Møller
, “
Sound zones: On the effect of ambient temperature variations in feed-forward systems
,”
Proceedings of the 142nd Convention of the Audio Engineering Society
, Berlin, Germany (May 20–23,
2017
).
18.
S. J.
Elliott
and
M.
Jones
, “
An active headrest for personal audio
,”
J. Acoust. Soc. Am.
119
(
5
),
2702
2709
(
2006
).
19.
P.
Coleman
,
P. J. B.
Jackson
,
M.
Olik
,
M.
Møller
,
M.
Olsen
, and
J. A.
Pedersen
, “
Acoustic contrast, planarity and robustness of sound zone methods using a circular loudspeaker array
,”
J. Acoust. Soc. Am.
135
(
4
),
1929
1940
(
2014
).
20.
X.
Ma
,
P. J.
Hegarty
, and, and
J. J.
Larsen
, “
Mitigation of nonlinear distortion in sound zone control by constraining individual loudspeaker driver amplitudes
,”
Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, Calgary, Canada (April 15–20,
2018
), pp.
456
460
.
21.
J.-Y.
Park
,
J.-W.
Choi
, and
Y.-H.
Kim
, “
Acoustic contrast sensitivity to transfer function errors in the design of a personal audio system
,”
J. Acoust. Soc. Am.
134
(
1
),
EL112
EL118
(
2013
).
22.
S. J.
Elliott
,
J.
Cheer
,
J.-W.
Choi
, and
Y.
Kim
, “
Robustness and regularization of personal audio systems
,”
IEEE Trans. Audio Speech Lang. Proc.
20
(
7
),
2123
2133
(
2012
).
23.
J.
Mourjopoulos
, “
On the variation and invertibility of room impulse response functions
,”
J. Sound Vib.
102
(
2
),
217
228
(
1985
).
24.
W.
Cho
and
J.
Chang
, “
Investigation of effect on the acoustic transfer function in a vehicle cabin according to change of configuration
,”
Proceedings of the 23rd International Congress on Acoustics
, Aachen, Germany (September 9–13,
2019
), pp.
5212
5217
.
25.
S.
Haykin
,
Adaptive Filter Theory
, 5th ed. (
Pearson
,
London
,
2014
).
26.
P. A.
Nelson
,
H.
Hamada
, and
S. J.
Elliott
, “
Adaptive inverse filters for stereophonic sound reproduction
,”
IEEE Trans. Signal Process.
40
(
7
),
1621
1632
(
1992
).
27.
M.
Bouchard
and
S.
Quednau
, “
Multichannel recursive-least-squares algorithms and fast-transversal-filter algorithms for active noise control and sound reproduction systems
,”
IEEE Trans. Speech Audio Process.
8
(
5
),
606
618
(
2000
).
28.
P.-A.
Gauthier
and
A.
Berry
, “
Adaptive wave field synthesis for broadband active sound field reproduction: Signal processing
,”
J. Acoust. Soc. Am.
123
(
4
),
2003
2016
(
2008
).
29.
M.
Buerger
,
C.
Hofmann
,
C.
Frankenbach
, and, and
W.
Kellermann
, “
Multizone sound reproduction in reverberant environments using an iterative least-squares filter design method with a spatiotemporal weighting function
,”
Proceedings of the 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)
, New Paltz, NY (October 15–18,
2017
).
30.
M.
Schneider
and
E. A.
Habets
, “
Iterative DFT-domain inverse filter optimization using a weighted least-squares criterion
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
27
(
12
),
1957
1969
(
2019
).
31.
Y.
Cai
,
M.
Wu
, and, and
J.
Yang
, “
Design of a time-domain acoustic contrast control for broadband input signals in personal audio systems
,”
Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing
, Vancouver, Canada (May 26–31,
2013
), pp.
341
345
.
32.
J. K.
Thomas
,
S. P.
Lovstedt
,
J. D.
Blotter
, and
S. D.
Sommerfeldt
, “
Eigenvalue equalization filtered-x algorithm for the multichannel active noise control of stationary and nonstationary signals
,”
J. Acoust. Soc. Am.
123
(
6
),
4238
4249
(
2008
).
33.
C. C.
Boucher
,
S. J.
Elliott
, and
P. A.
Nelson
, “
Effect of errors in the plant model on the performance of algorithms for adaptive feedforward control
,”
IEE Proc. F
138
(
4
),
313
319
(
1991
).
34.
L.
Vindrola
, “
Pressure matching with forced filters for personal sound zones application
,”
J. Audio Eng. Soc.
68
(
11
),
832
842
(
2020
).
35.
D.
Moreau
,
B.
Cazzolato
,
A.
Zander
, and
C.
Petersen
, “
A review of virtual sensing algorithms for active noise control
,”
Algorithms
1
(
2
),
69
99
(
2008
).
36.
S. J.
Elliott
,
J.
Zhang
,
C. K.
Lai
, and
J.
Cheer
, “
Superposition of the uncertainties in acoustic responses and the robust design of active control systems
,”
J. Acoust. Soc. Am.
148
(
3
),
1415
1424
(
2020
).
You do not currently have access to this content.