Stochastic sounds are useful to probe auditory memory, as they require listeners to learn unpredictable and novel patterns under controlled experimental conditions. Previous studies using white noise or random click trains have demonstrated rapid auditory learning. Here, we explored perceptual learning with a more parametrically variable stimulus. These “tone clouds” were defined as broadband combinations of tone pips at randomized frequencies and onset times. Varying the number of tones covered a perceptual range from individually audible pips to noise-like stimuli. Results showed that listeners could detect and learn repeating patterns in tone clouds. Task difficulty varied depending on the density of tone pips, with sparse tone clouds the easiest. Rapid learning of individual tone clouds was observed for all densities, with a roughly constant benefit of learning irrespective of baseline performance. Variations in task difficulty were correlated to amplitude modulations in an auditory model. Tone clouds thus provide a tool to probe auditory learning in a variety of task-difficulty settings, which could be useful for clinical or neurophysiological studies. They also show that rapid auditory learning operates over a wide range of spectrotemporal complexity, essentially from melodies to noise.

1.
Agus
,
T. R.
,
Carrión-Castillo
,
A.
,
Pressnitzer
,
D.
, and
Ramus
,
F.
(
2014
). “
Perceptual learning of acoustic noise by individuals with dyslexia
,”
J. Speech Lang. Hear. Res.
57
,
1069
1077
.
2.
Agus
,
T. R.
, and
Pressnitzer
,
D.
(
2013
). “
The detection of repetitions in noise before and after perceptual learning
,”
J. Acoust. Soc. Am.
134
,
464
473
.
3.
Agus
,
T. R.
,
Thorpe
,
S. J.
, and
Pressnitzer
,
D.
(
2010
). “
Rapid formation of robust auditory memories: Insights from noise
,”
Neuron
66
,
610
618
.
4.
Andrillon
,
T.
,
Kouider
,
S.
,
Agus
,
T.
, and
Pressnitzer
,
D.
(
2015
). “
Perceptual learning of acoustic noise generates memory-evoked potentials
,”
Curr. Biol.
25
,
2823
2829
.
5.
Andrillon
,
T.
,
Pressnitzer
,
D.
,
Léger
,
D.
, and
Kouider
,
S.
(
2017
). “
Formation and suppression of acoustic memories during human sleep
,”
Nat. Commun.
8
,
1
15
.
6.
Bale
,
M. R.
,
Bitzidou
,
M.
,
Pitas
,
A.
,
Brebner
,
L. S.
,
Khazim
,
L.
,
Anagnou
,
S. T.
,
Stevenson
,
C. D.
, and
Maravall
,
M.
(
2017
). “
Learning and recognition of tactile temporal sequences by mice and humans
,”
eLife
6
,
e27333
.
7.
Bianco
,
R.
,
Harrison
,
P. M.
,
Hu
,
M.
,
Bolger
,
C.
,
Picken
,
S.
,
Pearce
,
M. T.
, and
Chait
,
M.
(
2020
). “
Long-term implicit memory for sequential auditory patterns in humans
,”
eLife
9
,
e56073
.
8.
Carterette
,
E. C.
,
Friedman
,
M. P.
, and
Lovell
,
J. D.
(
1969
). “
Mach bands in hearing
,”
J. Acoust. Soc. Am.
45
,
986
998
.
9.
Cowan
,
N.
(
1984
). “
On short and long auditory stores
,”
Psychol. Bull.
96
,
341
370
.
10.
Dau
,
T.
,
Kollmeier
,
B.
, and
Kohlrausch
,
A.
(
1997
). “
Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers
,”
J. Acoust. Soc. Am.
102
,
2892
2905
.
11.
Dau
,
T.
,
Puschel
,
D.
, and
Kohlrausch
,
A.
(
1996
). “
A quantitative model of the ‘effective’ signal processing in the auditory system. II. Simulations and measurements
,”
J. Acoust. Soc. Am.
99
,
3623
3631
.
12.
Demany
,
L.
, and
Semal
,
C.
(
2008
). “
The role of memory in auditory perception
,” in
Auditory Perception of Sound Sources
, edited by
W. A.
Yost
,
A. N.
Popper
, and
R. R.
Fay
(
Springer Verlag
,
New York
), pp.
77
113
.
13.
Ding
,
N.
,
Patel
,
A. D.
,
Chen
,
L.
,
Butler
,
H.
,
Luo
,
C.
, and
Poeppel
,
D.
(
2017
). “
Temporal modulations in speech and music
,”
Neurosci. Biobehav. Rev.
81
,
181
187
.
14.
Drullman
,
R.
,
Festen
,
J. M.
, and
Plomp
,
R.
(
1994
). “
Effect of temporal envelope smearing on speech reception
,”
J. Acoust. Soc. Am.
95
,
1053
1064
.
15.
Elhilali
,
M.
,
Chi
,
T.
, and
Shamma
,
S. A.
(
2003
). “
A spectro-temporal modulation index (STMI) for assessment of speech intelligibility
,”
Speech Commun.
41
,
331
348
.
16.
Giroud
,
J.
,
Trebuchon
,
A.
,
Schon
,
D.
,
Marquis
,
P.
,
Liegeois-Chauvel
,
C.
,
Poeppel
,
D.
, and
Morillon
,
B.
(
2020
). “
Asymmetric sampling in human auditory cortex reveals spectral processing hierarchy
,”
PLoS Biol.
18
,
e3000207
.
17.
Gold
,
J. M.
,
Aizenman
,
A.
,
Bond
,
S. M.
, and
Sekuler
,
R.
(
2014
). “
Memory and incidental learning for visual frozen noise sequences
,”
Vis. Res.
99
,
19
36
.
18.
Goossens
,
T.
,
van de Par
,
S.
, and
Kohlrausch
,
A.
(
2008
). “
On the ability to discriminate Gaussian-noise tokens or random tone-burst complexes
,”
J. Acoust. Soc. Am.
124
,
2251
2262
.
19.
Griffiths
,
T. D.
, and
Warren
,
J. D.
(
2002
). “
The planum temporale as a computational hub
,”
Trends Neurosci.
25
,
348
353
.
20.
Gutschalk
,
A.
,
Micheyl
,
C.
, and
Oxenham
,
A. J.
(
2008
). “
Neural correlates of auditory perceptual awareness under informational masking
,”
PLoS Biol.
6
,
1
10
.
21.
Guttman
,
N.
, and
Julesz
,
B.
(
1963
). “
Lower limits of auditory periodicity analysis
,”
J. Acoust. Soc. Am.
35
,
610
.
22.
Hartmann
,
W. M.
(
1998
).
Signals, Sound, and Sensation
(
Springer-Verlag
,
New York
).
23.
Hartmann
,
W. M.
, and
Pumplin
,
J.
(
1988
). “
Noise power fluctuations and the masking of sine signals
,”
J. Acoust. Soc. Am.
83
,
2277
2289
.
24.
Hopkins
,
K.
,
Moore
,
B. C. J.
, and
Stone
,
M. A.
(
2010
). “
The effects of the addition of low-level, low-noise noise on the intelligibility of sentences processed to remove temporal envelope information
,”
J. Acoust. Soc. Am.
128
,
2150
2161
.
25.
Kaernbach
,
C.
(
1993
). “
Temporal and spectral basis of the features perceived in repeated noise
,”
J. Acoust. Soc. Am.
94
,
91
97
.
26.
Kaernbach
,
C.
(
2004
). “
The memory of noise
,”
Exp. Psychol.
51
,
240
248
.
27.
Kang
,
H.
,
Agus
,
T. R.
, and
Pressnitzer
,
D.
(
2017
). “
Auditory memory for random time patterns
,”
J. Acoust. Soc. Am.
142
,
2219
2232
.
28.
Kang
,
H.
,
Lancelin
,
D.
, and
Pressnitzer
,
D.
(
2018
). “
Memory for random time patterns in audition, touch, and vision
,”
Neuroscience
389
,
118
132
.
29.
Kidd
,
G.
, Jr.
,
Mason
,
C. R.
,
Deliwala
,
P. S.
,
Woods
,
W. S.
, and
Colburn
,
H. S.
(
1994
). “
Reducing informational masking by sound segregation
,”
J. Acoust. Soc. Am.
95
,
3475
3480
.
30.
Kidd
,
G.
, Jr.
,
Mason
,
C. R.
, and
Richards
,
V. M.
(
2003
). “
Multiple bursts, multiple looks, and stream coherence in the release from informational masking
,”
J. Acoust. Soc. Am.
114
,
2835
2845
.
31.
Kronland-Martinet
,
R.
(
1988
). “
The wavelet transform for analysis, synthesis and processing of speech and music sounds
,”
Comput. Music J.
12
,
11
20
.
32.
Kumar
,
S.
,
Bonnici
,
H. M.
,
Teki
,
S.
,
Agus
,
T. R.
,
Pressnitzer
,
D.
,
Maguire
,
E. A.
, and
Griffiths
,
T. D.
(
2014
). “
Representations of specific acoustic patterns in the auditory cortex and hippocampus
,”
Proc. Biol. Sci.
281
,
20141000
.
33.
Lim
,
S. J.
, and
Holt
,
L. L.
(
2011
). “
Learning foreign sounds in an alien world: Videogame training improves non-native speech categorization
,”
Cogn. Sci.
35
,
1390
1405
.
34.
Luo
,
H.
,
Tian
,
X.
,
Song
,
K.
,
Zhou
,
K.
, and
Poeppel
,
D.
(
2013
). “
Neural response phase tracks how listeners learn new acoustic representations
,”
Curr. Biol.
23
,
968
974
.
35.
Macmillan
,
N. A.
, and
Creelman
,
C. D.
(
2005
).
Detection Theory: A User's Guide
, 2nd ed. (
Lawrence Erlbaum Associates
,
Mahwah, NJ
).
36.
Maharjan
,
S.
,
Gold
,
J. M.
, and
Sekuler
,
R.
(
2017
). “
Memory and learning for visual signals in time and space
,”
Atten. Percept. Psychophys.
79
,
1107
1122
.
37.
Mallat
,
S. G.
(
1989
). “
A theory for multiresolution signal decomposition: The wavelet representation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
11
,
674
693
.
38.
McDermott
,
J. H.
, and
Simoncelli
,
E. P.
(
2011
). “
Sound texture perception via statistics of the auditory periphery: Evidence from sound synthesis
,”
Neuron
71
,
926
940
.
39.
Mishra
,
S. K.
, and
Panda
,
M. R.
(
2016
). “
Rapid auditory learning of temporal gap detection
,”
J. Acoust. Soc. Am.
140
,
EL50
EL55
.
40.
Młynarski
,
W.
, and
McDermott
,
J. H.
(
2018
). “
Learning midlevel auditory codes from natural sound statistics
,”
Neural Comput.
30
,
631
669
.
41.
Moore
,
B. C.
, and
Glasberg
,
B. R.
(
1983
). “
Suggested formulae for calculating auditory-filter bandwidths and excitation patterns
,”
J. Acoust. Soc. Am.
74
,
750
753
.
42.
Nees
,
M. A.
(
2016
). “
Have we forgotten auditory sensory memory? Retention intervals in studies of nonverbal auditory working memory
,”
Front Psychol.
7
,
1
6
.
43.
Neff
,
D. L.
, and
Green
,
D. M.
(
1987
). “
Masking produced by spectral uncertainty with multicomponent maskers
,”
Percept. Psychophys.
41
,
409
415
.
44.
Patterson
,
R. D.
,
Allerhand
,
M. H.
, and
Giguere
,
C.
(
1995
). “
Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform
,”
J. Acoust. Soc. Am.
98
,
1890
1894
.
45.
Poeppel
,
D.
, and
Assaneo
,
M. F.
(
2020
). “
Speech rhythms and their neural foundations
,”
Nat. Rev. Neurosci.
21
,
322
334
.
46.
Pollack
,
I.
(
1968
). “
Periodicity discrimination for auditory pulse trains
,”
J. Acoust. Soc. Am.
43
,
1113
1119
.
47.
Pumplin
,
J.
(
1985
). “
Low-noise noise
,”
J. Acoust. Soc. Am.
78
,
100
104
.
48.
Rajendran
,
V. G.
,
Harper
,
N. S.
,
Abdel-Latif
,
K. H.
, and
Schnupp
,
J. W.
(
2016
). “
Rhythm facilitates the detection of repeating sound patterns
,”
Front. Neurosci.
10
,
1
7
.
49.
Rice
,
S. O.
(
1952
).
Mathematical Analysis of Random Noise
(
Bell Telephone Labs
,
New York
).
50.
Samson
,
F.
,
Zeffiro
,
T. A.
,
Toussaint
,
A.
, and
Belin
,
P.
(
2011
). “
Stimulus complexity and categorical effects in human auditory cortex: An activation likelihood estimation meta-analysis
,”
Front. Psychol.
1
,
1
23
.
51.
Santoro
,
R.
,
Moerel
,
M.
,
De Martino
,
F.
,
Goebel
,
R.
,
Ugurbil
,
K.
,
Yacoub
,
E.
, and
Formisano
,
E.
(
2014
). “
Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex
,”
PLoS Comput. Biol.
10
,
e1003412
.
52.
Slaney
,
M.
(
1998
). “
Auditory toolbox, version 2
,”
Technical Report No. 1998-010
(
Interval Research Corporation
,
Palo Alto, CA
).
53.
Small
,
A. M.
, Jr.
, and
Daniloff
,
R. G.
(
1967
). “
Pitch of noise bands
,”
J. Acoust. Soc. Am.
41
,
506
512
.
54.
Song
,
K.
, and
Luo
,
H.
(
2017
). “
Temporal organization of sound information in auditory memory
,”
Front. Psychol.
8
,
1
11
.
55.
Steeneken
,
H. J.
, and
Houtgast
,
T.
(
1980
). “
A physical method for measuring speech-transmission quality
,”
J. Acoust. Soc. Am.
67
,
318
326
.
56.
van Wijngaarden
,
S. J.
, and
Houtgast
,
T.
(
2004
). “
Effect of talker and speaking style on the speech transmission index
,”
J. Acoust. Soc. Am.
115
,
38
41
.
57.
Viemeister
,
N. F.
(
1979
). “
Temporal modulation transfer functions based upon modulation thresholds
,”
J. Acoust. Soc. Am.
66
,
1364
1380
.
58.
Viswanathan
,
J.
,
Rémy
,
F.
,
Bacon-Macé
,
N.
, and
Thorpe
,
S. J.
(
2016
). “
Long term memory for noise: Evidence of robust encoding of very short temporal acoustic patterns
,”
Front. Neurosci.
10
,
490
.
59.
Warren
,
R. M.
,
Bashford
,
J. A.
, Jr.
,
Cooley
,
J. M.
, and
Brubaker
,
B. S.
(
2001
). “
Detection of acoustic repetition for very long stochastic patterns
,”
Percept. Psychophys.
63
,
175
182
.
60.
Wright
,
B. A.
, and
Zhang
,
Y.
(
2009
). “
Insights into human auditory processing gained from perceptual learning
,” in
The Cognitive Neurosciences
, edited by
M. S.
Gazzaniga
(
MIT Press
,
Cambridge, MA
), pp.
353
365
.

Supplementary Material

You do not currently have access to this content.