Broad omnidirectional band gaps in a three-dimensional phononic crystal consisting of a face-centered cubic array of spherical air voids connected by cylindrical conduits in solid background are numerically and experimentally demonstrated. With a low material filling fraction of 37.7%, the first bandgap covers 3.1–13.6 kHz frequency range with 126.1% gap-over-midgap ratio. Finite-element method is employed in band structure and numerical transmission analyses. Omnidirectional band gaps are observed in only two-period thick slabs in the 100, 110, and 111 orientations. Experimental transmission characteristics are in good agreement with numerical data. The phononic crystal can be employed in low-frequency sound proofing.

1.
M. S.
Kushwaha
,
P.
Halevi
,
L.
Dobrzynski
, and
B.
Djafari-Rouhani
, “
Acoustic band structure of periodic elastic composites
,”
Phys. Rev. Lett.
71
,
2022
2025
(
1993
).
2.
M.
Kushwaha
and
B.
Djafari-Rouhani
, “
Complete acoustic stop bands for cubic arrays of spherical liquid balloons
,”
J. Appl. Phys.
80
,
3191
3195
(
1996
).
3.
B.
Assouar
,
R.
Sainidou
, and
I.
Psarobas
,
Phononic Crystals: Fundamentals and Applications
(
Springer
,
New York
,
2016
), pp.
51
83
.
4.
H.
Jiang
and
Y.
Chen
, “
Lightweight architected hollow sphere foams for simultaneous noise and vibration control
,”
J. Phys. D: Appl. Phys.
52
,
325303
(
2019
).
5.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y.
Zhu
,
Z.
Yang
,
C. T.
Chan
, and
P.
Sheng
, “
Locally resonant sonic materials
,”
Science
289
,
1734
1736
(
2000
).
6.
A.
Khelif
,
F.-L.
Hsiao
,
A.
Choujaa
,
S.
Benchabane
, and
V.
Laude
, “
Octave omnidirectional band gap in a three-dimensional phononic crystal
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
,
1621
1625
(
2010
).
7.
N.
Aravantinos-Zafiris
and
M.
Sigalas
, “
Band gaps in three-dimensional layer-by-layer phononic crystal
,”
J. Vib. Acoust.
135
,
041003
(
2013
).
8.
L.-Y.
Wu
and
L.-W.
Chen
, “
Acoustic band gaps of the woodpile sonic crystal with the simple cubic lattice
,”
J. Phys. D: Appl. Phys.
44
,
045402
(
2011
).
9.
Y.
Chen
,
H.
Yao
, and
L.
Wang
, “
Acoustic band gaps of three-dimensional periodic polymer cellular solids with cubic symmetry
,”
J. Appl. Phys.
114
,
043521
(
2013
).
10.
C.
Croënne
,
E.
Lee
,
H.
Hu
, and
J.
Page
, “
Band gaps in phononic crystals: Generation mechanisms and interaction effects
,”
AIP Adv.
1
,
041401
(
2011
).
11.
F.
Lucklum
and
M.
Vellekoop
, “
Bandgap engineering of three-dimensional phononic crystals in a simple cubic lattice
,”
Appl. Phys. Lett.
113
,
201902
(
2018
).
12.
O. R.
Bilal
,
D.
Ballagi
, and
C.
Daraio
, “
Architected lattices for simultaneous broadband attenuation of airborne sound and mechanical vibrations in all directions
,”
Phys. Rev. Appl.
10
,
054060
(
2018
).
13.
X.
Hu
,
C. T.
Chan
, and
J.
Zi
, “
Two-dimensional sonic crystals with Helmholtz resonators
,”
Phys. Rev. E
71
,
055601
(
2005
).
14.
L.
Chalmers
,
D.
Elford
,
F.
Kusmartsev
, and
G.
Swallowe
, “
Acoustic band gap formation in two-dimensional locally resonant sonic crystals comprised of Helmholtz resonators
,”
Int. J. Mod. Phys. B
23
,
4234
4243
(
2009
).
15.
Z. G.
Wang
,
S. H.
Lee
,
C. K.
Kim
,
C. M.
Park
,
K.
Nahm
, and
S.
Nikitov
, “
Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators
,”
J. Appl. Phys.
103
,
064907
(
2008
).
16.
Y.
Cheng
,
J.
Xu
, and
X.
Liu
, “
Broad forbidden bands in parallel-coupled locally resonant ultrasonic metamaterials
,”
Appl. Phys. Lett.
92
,
051913
(
2008
).
17.
J.-B.
Li
,
Y.-S.
Wang
, and
C.
Zhang
, “
Complete bandgap in three-dimensional holey phononic crystals with resonators
,”
J. Vib. Acoust.
135
,
031015
(
2013
).
18.
F.
Lucklum
and
M.
Vellekoop
, “
Design and fabrication challenges for millimeter-scale three-dimensional phononic crystals
,”
Crystals
7
,
348
(
2017
).
19.
F.
Lucklum
and
M.
Vellekoop
, “
Rapid prototyping of 3D phononic crystals using high-resolution stereolithography fabrication
,”
Procedia Eng.
120
,
1095
1098
(
2015
).
20.
F.
Lucklum
and
M. J.
Vellekoop
, “
Realization of complex 3-D phononic crystals with wide complete acoustic band gaps
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
63
,
796
797
(
2016
).
21.
N.
Korozlu
,
O. A.
Kaya
,
A.
Cicek
, and
B.
Ulug
, “
Acoustic Tamm states of three-dimensional solid-fluid phononic crystals
,”
J. Acoust. Soc. Am.
143
,
756
764
(
2018
).
22.
N.
Aravantinos-Zafiris
,
F.
Lucklum
, and
M. M.
Sigalas
, “
Complete phononic band gaps in the 3D Yablonovite structure with spheres
,”
Ultrasonics
110
,
106265
(
2021
).
23.
F.
Cervera
,
L.
Sanchis
,
J. V.
Sánchez-Pérez
,
R.
Martínez-Sala
,
C.
Rubio
,
F.
Meseguer
,
C.
López
,
D.
Caballero
, and
J.
Sánchez-Dehesa
, “
Refractive Acoustic Devices for Airborne Sound
,”
Phys. Rev. Lett.
88
,
023902
(
2001
).
24.
Y.
Jin
,
B.
Djafari-Rouhani
, and
D.
Torrent
, “
Gradient index phononic crystals and metamaterials
,”
Nanophotonics.
8
,
685
701
(
2019
).
25.
D. R.
Raichel
,
The Science and Applications of Acoustics
(
Springer Science & Business Media
,
New York
,
2006
), pp.
145
148
.
26.
M.
Molerón
,
M.
Serra-Garcia
, and
C.
Daraio
, “
Visco-thermal effects in acoustic metamaterials: From total transmission to total reflection and high absorption
,”
New J. Phys.
18
,
033003
(
2016
).
27.
X.
Jiang
,
Y.
Li
, and
L.
Zhang
, “
Thermoviscous effects on sound transmission through a metasurface of hybrid resonances
,”
J. Acoust. Soc. Am.
141
,
EL363
EL638
(
2017
).
28.
J.-P.
Berenger
, “
Perfectly matched layer for the FDTD solution of wave-structure interaction problems
,”
IEEE Trans. Antennas Propag.
44
,
110
117
(
1996
).
29.
V.
Fokin
,
M.
Ambati
,
C.
Sun
, and
X.
Zhang
, “
Method for retrieving effective properties of locally resonant acoustic metamaterials
,”
Phys. Rev. B
76
,
144302
(
2007
).
You do not currently have access to this content.