In this work, we explore machine learning through a model-agnostic feature representation known as braiding, that employs braid manifolds to interpret multipath ray bundles. We generate training and testing data using the well-known BELLHOP model to simulate shallow water acoustic channels across a wide range of multipath scattering activity. We examine three different machine learning techniques—k-nearest neighbors, random forest tree ensemble, and a fully connected neural network—as well as two machine learning applications. The first application applies known physical parameters and braid information to determine the number of reflections the acoustic signal may undergo through the environment. The second application applies braid path information to determine if a braid is an important representation of the channel (i.e., evolving across bands of higher amplitude activity in the channel). Testing accuracy of the best trained machine learning algorithm in the first application was 86.70% and the testing accuracy of the second application was 99.94%. This work can be potentially beneficial in examining how the reflectors in the environment changeover time while also determining relevant braids for faster channel estimation.

1.
Adavanne
,
S.
,
Politis
,
A.
, and
Virtanen
,
T.
(
2018
). “
Direction of arrival estimation for multiple sound sources using convolutional recurrent neural network
,” in
2018 26th European Signal Processing Conference (EUSIPCO)
, pp.
1462
1466
.
2.
Artin
,
E.
(
1947
). “
Theory of braids
,”
Ann. Math.
48
(
1
),
101
126
.
3.
Bianco
,
M. J.
,
Gerstoft
,
P.
,
Traer
,
J.
,
Ozanich
,
E.
,
Roch
,
M. A.
,
Gannot
,
S.
, and
Deledalle
,
C.-A.
(
2019
). “
Machine learning in acoustics: Theory and applications
,”
J. Acoust. Soc. Am.
146
(
5
),
3590
3628
.
4.
Chen
,
R.
, and
Schmidt
,
H.
(
2021
). “
Model-based convolutional neural network approach to underwater source-range estimation
,”
J. Acoust. Soc. Am.
149
(
1
),
405
420
.
5.
Choi
,
J.
,
Choo
,
Y.
, and
Lee
,
K.
(
2019
). “
Acoustic classification of surface and underwater vessels in the ocean using supervised machine learning
,”
Sensors
19
(
16
),
3492
.
6.
Hu
,
G.
,
Wang
,
K.
,
Peng
,
Y.
,
Qiu
,
M.
,
Shi
,
J.
, and
Liu
,
L.
(
2018
). “
Deep learning methods for underwater target feature extraction and recognition
,”
Comput. Intell. Neurosci.
2018
,
2143011
.
7.
Huang
,
J.
,
Barbeau
,
M.
,
Blouin
,
S.
,
Hamm
,
C.
, and
Taillefer
,
M.
(
2017
). “
Simulation and modeling of hydro acoustic communication channels with wide band attenuation and ambient noise
,”
Int. J. Parallel Emerg. Distrib. Syst.
32
(
5
),
466
485
.
8.
Jalal
,
A.
,
Salman
,
A.
,
Mian
,
A.
,
Shortis
,
M.
, and
Shafait
,
F.
(
2020
). “
Fish detection and species classification in underwater environments using deep learning with temporal information
,”
Ecological Inf.
57
,
101088
.
9.
McCarthy
,
R.
, and
Sen Gupta
,
A.
(
2021
). “
Underwater channel estimation exploiting multipath feature morphology
,”
J. Acoust. Soc. Am.
149
(
2
),
983
996
.
10.
Michalopoulou
,
Z.-H.
,
Pole
,
A.
, and
Abdi
,
A.
(
2019
). “
Bayesian coherent and incoherent matched-field localization and detection in the ocean
,”
J. Acoust. Soc. Am.
146
(
6
),
4812
4820
.
11.
Niu
,
H.
,
Gong
,
Z.
,
Ozanich
,
E.
,
Gerstoft
,
P.
,
Wang
,
H.
, and
Li
,
Z.
(
2019
). “
Deep-learning source localization using multi-frequency magnitude-only data
,”
J. Acoust. Soc. Am.
146
(
1
),
211
222
.
12.
Ozanich
,
E.
,
Gerstoft
,
P.
, and
Niu
,
H.
(
2020
). “
A feedforward neural network for direction-of-arrival estimation
,”
J. Acoust. Soc. Am.
147
(
3
),
2035
2048
.
13.
Ping
,
G.
,
Fernandez-Grande
,
E.
,
Gerstoft
,
P.
, and
Chu
,
Z.
(
2020
). “
Three-dimensional source localization using sparse Bayesian learning on a spherical microphone array
,”
J. Acoust. Soc. Am.
147
(
6
),
3895
3904
.
14.
Porter
,
M.
(
2011
). The BELLHOP Manual and Users Guide: PRELIMINARY DRAFT, Heat, Light, and Sound Research, Inc.
15.
Qarabaqi
,
P.
, and
Stojanovic
,
M.
(
2013
). “
Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels
,”
IEEE J. Oceanic Eng.
38
(
4
),
701
717
.
16.
Rodriguez
,
O.
(
2008
).
General description of the BELLHOP ray tracing program
.
17.
Sen Gupta
,
A.
, and
Kirsteins
,
I.
(
2017
). “
Disentangling sonar target features using braided feature graphs
,” in
OCEANS 2017
,
Anchorage, AK
, pp.
1
5
.
18.
Sen Gupta
,
A.
, and
McCarthy
,
R.
(
2018
). “
Interpreting different features of shallow water acoustic channels using braid manifolds
,”
2018 Fourth Underwater Communications and Network Conference (UComms)
,
Lerici, Italy
, pp.
1
5
.
19.
Sen Gupta
,
A.
, and
McCarthy
,
R.
(
2019
). “
Employing braid theory to disentangle overlapping oceanic events in the shallow water acoustic channel
,”
J. Acoust. Soc. Am.
145
(
3
),
1884
1884
.
20.
Sen Gupta
,
A.
, and
Preisig
,
J.
(
2012
). “
A geometric mixed norm approach to shallow water acoustic channel estimation and tracking
,”
Phys. Commun.
5
,
119
128
.
21.
Shiu
,
Y.
,
Palmer
,
K. J.
,
Roch
,
M. A.
,
Fleishman
,
E.
,
Liu
,
X.
,
Nosal
,
E.-M.
,
Helble
,
T.
,
Cholewiak
,
D.
,
Gillespie
,
D.
, and
Klinck
,
H.
(
2020
). “
Deep neural networks for automated detection of marine mammal species
,”
Sci. Rep.
10
,
607
.
22.
Siddiqui
,
S.
,
Malik
,
I.
,
Shafait
,
F.
,
Mian
,
A.
,
Shortis
,
M.
, and
Harvey
,
E.
(
2018
). “
Automatic fish species classification in underwater videos: Exploiting pretrained deep neural network models to compensate for limited labelled data
,”
ICES J. Mar. Sci.
75
,
374
389
.
23.
Thiffeault
,
J.
(
2010
). “
Braids of entangled particle trajectories
,”
Chaos: An Interdisciplinary J. Nonlin. Sci.
20
(
1
),
017516
.
24.
Wiley
,
E.
,
McNyset
,
K. M.
,
Peterson
,
A. T.
,
Robins
,
C. R.
, and
Stewart
,
A. M.
(
2003
). “
Niche modeling perspective on geographic range predictions in the marine environment using a machine-learning algorithm
,”
Oceanography
16
(
3
),
120
127
.
25.
Williams
,
D.
, and
España
,
A.
(
2020
). “
Toward explainable convolutional neural network classifiers with acoustic-color sonar data
,”
J. Acoust. Soc. Am.
148
(
4
),
2661
2661
.
26.
Wu
,
H.
,
Song
,
Q.
, and
Jin
,
G.
(
2018
). “
Deep learning based framework for underwater acoustic signal recognition and classification
,” in
Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence, CSAI '18
,
Association for Computing Machinery
,
New York, NY, USA
, pp.
385
388
.
27.
Yue
,
H.
,
Zhang
,
L.
,
Wang
,
D.
,
Wang
,
Y.
, and
Lu
,
Z.
(
2017
). “
The classification of underwater acoustic targets based on deep learning methods
,”
Adv. Intell. Syst. Res.
134
,
526
529
.
28.
Xinhua
,
Z.
,
Zhenbo
,
L.
, and
Chunyu
,
K.
(
2003
). “
Underwater acoustic targets classification using support vector machine
,” in
Proceedings of the 2003 International Conference on Neural Networks and Signal Processing
, Vol.
2
, pp.
932
935
.
29.
Zheng
,
Z.
,
Yang
,
T. C.
,
Gerstoft
,
P.
, and
Pan
,
X.
(
2020
). “
Joint towed array shape and direction of arrivals estimation using sparse Bayesian learning during maneuvering
,”
J. Acoust. Soc. Am.
147
(
3
),
1738
1751
.
You do not currently have access to this content.