U.S. Department of Defense hearing conservation and noise limits standards require the definition of safe areas around all objects that emit noise and suggest various methods for characterizing these levels. The protection documents do not describe methods for reducing discrete measurement points into level fields to map safe and hazardous noise areas. For maintainers of high-powered jet aircraft, the suggested 85 dBA level contours that delineate the border between safe and hazardous regions occur at distances that far exceed normal operation positions. Conversion of discrete measurements to modeled levels defined over the entire ground personnel operational area in the aircraft vicinity is required to ensure sufficient protection. Present research offers a method to build a coarse map of grid points with nearest neighbor approximations, and then refines this using bi-linear smoothing. This nearest neighbor bi-linear smoothing approach provides predictions that are sufficiently accurate in cross-validation comparisons to the near-field locations and is the preferred method for the creation of hearing conservation contour level maps.

1.
U.S. Air Force
,
Occupational Noise and Hearing Conservation Program
,
Air Force Instruction
48
127
(
2016
).
2.
Aviation & Missile Command
, Design Criteria Standard—Noise Limits (MIL-STD-1474 E) (
2015
).
3.
ANSI
, S12.75:
Methods for the Measurement of Noise Emissions from High Performance Military Jet Aircraft
(
American National Standards Institute
,
New York
,
2021
).
4.
T. A.
Buishand
and
T.
Brandsma
, “
Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest-neighbor resampling
,”
Water Res. Res.
37
(
11
),
2761
2776
(
2001
).
5.
R.
Pouteau
,
J. Y.
Meyer
,
R.
Taputuarai
, and
B.
Stoll
, “
Support vector machines to map rare and endangered native plants in Pacific islands forests
,”
Ecol. Inf.
9
,
37
46
(
2012
).
6.
K. Q.
Weinberger
and
L. K.
Saul
, “
Distance metric learning for large margin nearest neighbor classification
,”
J. Mach. Learn. Res.
10
(
2
),
207
244
(
2009
).
7.
U.
Lall
and
A.
Sharma
, “
A nearest neighbor bootstrap for resampling hydrologic time series
,”
Water Res. Res.
32
(
3
),
679
693
(
1996
).
8.
S. S.
Baboo
and
M. R.
Devi
, “
An analysis of different resampling methods in Coimbatore, District
,”
Global J. Comput. Sci. Technol.
10
,
61
66
(
2010
).
9.
M. M.
James
,
A. R.
Salton
,
J. M.
Downing
,
K. L.
Gee
,
T. B.
Neilsen
,
B. O.
Reichman
,
R. L.
McKinley
,
A. T.
Wall
, and
H. L.
Gallagher
, “
Acoustic emissions from F-35A and F-35B during ground run-up
,” in
Proceedings of the 21st AIAA/CEAS Aeroacoustics Conference
(
2015
).
10.
K. L.
Gee
,
V. W.
Sparrow
,
M. M.
James
,
J. M.
Downing
,
C. M.
Hobbs
,
T. B.
Gabrielson
, and
A. A.
Atchley
, “
The role of nonlinear effects in the propagation of noise from high-power jet aircraft
,”
J. Acoust. Soc. Am.
123
(
6
),
4082
4093
(
2008
).
11.
Range Commanders Council Telecommunications and Timing Group
,
IRIG Serial Time Code Formats
(
Secretariat, Range Commanders Council
,
U.S. Army White Sands Missile Range, NM
,
2016
).
12.
K. M.
Leete
,
A. B.
Vaughn
,
M. S.
Bassett
,
R. D.
Rasband
,
D. J.
Novakovich
,
K. L.
Gee
,
S. C.
Campbell
,
F. S.
Mobley
, and
A. T.
Wall
, “
Jet noise measurements of an installed GE F404 engine
,” in
AIAA Scitech 2021 Forum
(
2021
), p.
1638
.
13.
R.
Pouteau
and
B.
Stoll
, “
SVM selective fusion (SELF) for multi-source classification of structurally complex tropical rainforest
,”
IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
5
(
4
),
1203
1212
(
2012
).
14.
Y.
He
,
T. A.
Warner
,
B. E.
McNeil
, and
E.
Lee
, “
Reducing uncertainties in applying remotely sensed land use and land cover maps in land-atmosphere interaction: Identifying change in space and time
,”
Remote Sens.
10
(
4
),
506
(
2018
).
15.
S.
Tan
, “
Neighbor-weighted k-nearest neighbor for unbalanced text corpus
,”
Expert Syst. Appl.
28
(
4
),
667
671
(
2005
).
16.
S. F.
Wu
and
J.
Yu
, “
Reconstructing interior acoustic pressure fields via Helmholtz equation least-squares method
,”
J. Acoust. Soc. Am.
104
(
4
),
2054
2060
(
1998
).
17.
G. R.
Liu
, “
A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods
,”
Int. J. Comput. Methods
05
(
02
),
199
236
(
2008
).
18.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
, and
S. J.
Van Der Walt
, “
SciPy 1.0: Fundamental algorithms for scientific computing in Python
,”
Nat. Methods
17
(
3
),
261
272
(
2020
).
19.
R. G.
Sargent
, “
Verification and validation of simulation models
,” in
Proceedings of the 2010 Winter Simulation Conference
,
IEEE
(
2010
), pp.
166
183
.
20.
C. K. W.
Tam
, “
Stochastic model theory of broadband shock associated noise from supersonic jets
,”
J. Sound Vib.
116
(
2
),
265
302
(
1987
).
21.
P. J.
Morris
and
S. A.
Miller
, “
Prediction of broadband shock-associated noise using Reynolds-averaged Navier-Stokes computational fluid dynamics
,”
AIAA J.
48
(
12
),
2931
2944
(
2010
).
22.
M. H.
Wong
,
R.
Kirby
,
P.
Jordan
, and
D.
Edgington-Mitchell
, “
Azimuthal decomposition of the radiated noise from supersonic shock-containing jets
,”
J. Acoust. Soc. Am.
148
(
4
),
2015
2027
(
2020
).
23.
C. W.
Kuo
,
Q.
Buisson
,
D. K.
McLaughlin
, and
P. J.
Morris
, “
Experimental investigation of near-field pressure fluctuations generated by supersonic jets
,” in
19th AIAA/CEAS Aeroacoustics Conference
(
2013
), p.
2033
.
24.
C.
Tam
,
K.
Viswanathan
,
N.
Pastouchenko
, and
B.
Tam
, “
Continuation of near-acoustic fields of jets to the far field: Part II. Experimental validation and noise source characteristics
,” in
16th AIAA/CEAS Aeroacoustics Conference
(
2010
), p.
3729
.
25.
C.
Tam
,
N.
Pastouchenko
, and
K.
Viswanathan
, “
Continuation of near-acoustic fields of jets to the far field. Part I: Theory
,” In
16th AIAA/CEAS Aeroacoustics Conference
(
2010
), p.
3728
.
26.
T. B.
Neilsen
,
K. L.
Gee
, and
M. M.
James
, “
Spectral characterization in the near and mid-field of military jet aircraft noise
,”
AIAA Paper 2013-2191, 19th AIAA/CEAS Aeroacoustics Conference
,
Berlin, Germany
(
2013
).
27.
T. B.
Neilsen
,
A. B.
Vaughn
,
K. L.
Gee
,
S. H.
Swift
,
A. T.
Wall
,
J. M.
Downing
, and
M. M.
James
, “
Inclusion of broadband shock-associated noise in spectral decomposition of noise from high-performance military aircraft
,”
AIAA Paper 2018-3146, 2018 AIAA/CEAS Aeroacoustics Conference
,
Atlanta, GA
(
2018
).
28.
H.
Ji
,
F. S.
Lien
, and
E.
Yee
, “
A robust and efficient hybrid cut-cell/ghost-cell method with adaptive mesh refinement for moving boundaries on irregular domains
,”
Comput. Meth. Appl. Mech. Eng.
198
(
3-4
),
432
448
(
2008
).
29.
C.
Chi
,
B. J.
Lee
, and
H. G.
Im
, “
An improved ghost-cell immersed boundary method for compressible flow simulations
,”
Int. J. Numer. Methods Fluids
83
(
2
),
132
148
(
2017
).
30.
P. S.
Yu
and
T. C.
Yang
, “
Fuzzy multi-objective function for rainfall-runoff model calibration
,”
J. Hydrol.
238
(
1-2
),
1
14
(
2000
).
31.
T.
Chai
and
R. R.
Draxler
, “
Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature
,”
Geosci. Model Dev.
7
(
3
),
1247
1250
(
2014
).
32.
F.
Waltz
, “
An engineering approach: Hierarchical optimization criteria
,”
IEEE Trans. Automat. Control
12
(
2
),
179
180
(
1967
).
33.
S. A.
Glantz
and
B. K.
Slinker
,
Primer of Applied Regression & Analysis of Variance
(
McGraw-Hill
,
New York
,
2001
).
34.
N.
Draper
and
H.
Smith
,
Applied Regression Analysis
(
Wiley Interscience
,
New York
,
1981
).
You do not currently have access to this content.