Broadband shock-associated noise (BBSAN) is an important component of supersonic jet noise for jets at off-design conditions when the pressure at the nozzle exit is different from the ambient. Two high-area-ratio under-expanded supersonic jets at nozzle pressure ratios (NPRs) 3.4 and 4.2 are considered. The jets correspond to conditions of the experiment in the Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC) in the Supersonic Jet Facility of Monash University. Flow solutions are obtained by the large eddy simulation (LES) and Reynolds averaged Navier–Stokes (RANS) methods. The solutions are validated against the particle image velocimetry (PIV) data. For noise spectra predictions, the LES solution is combined with the time-domain Ffowcs Williams–Hawkings method. To probe the accuracy of the reduced-order method based on acoustic analogy, the RANS solutions are substituted in the Morris and Miller BBSAN method, where different options for modelling of the acoustic correlation scales are investigated. The noise spectra predictions are compared with the experimental data from the non-anechoic LTRAC facility and the NASA empirical sJet model. Apart from the low frequencies influenced by the jet mixing noise, the RANS-based acoustic predictions align with those from LES for most frequencies in the range of Strouhal numbers (St) 0.4 < St < 2 within 1–2 dB.

1.
Bodony
,
D. J.
,
Jaiyoung
,
R.
,
Ray
,
P.
, and
Lele
,
S. K.
(
2006
). “
Investigating broadband shock-associated noise of axisymmetric jets using large-eddy simulation
,” in
Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference
, May 8–10, Cambridge, MA, AIAA 2006-2495.
2.
Chintagunta
,
A.
,
Naghibi
,
S. E.
, and
Karabasov
,
S. A.
(
2017
). “
Dispersion improved CABARET for computational aeroacoustics
,” in
Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference
, June 5–9, Denver, CO, AIAA 2017-4185.
3.
Chintagunta
,
A.
,
Naghibi
,
S. E.
, and
Karabasov
,
S. A.
(
2018
). “
Flux-corrected dispersion-improved CABARET schemes for linear and nonlinear wave propagation problems
,”
Comput. Fluids
169
,
111
128
.
4.
Cowart
,
R.
(
2013
). “
Developing noise standards for future supersonic civil aircraft
,”
Proc. Meetings Acoust.
19
(
1
),
040040
.
5.
Davies
,
P. O. A. L.
,
Fisher
,
M. J.
, and
Barratt
,
M. J.
(
1963
). “
The characteristics of the turbulence in the mixing region of a round jet
,”
J. Fluid Mech.
15
(
3
),
337
367
.
6.
Edgington-Mitchell
,
D. M.
,
Oberleithner
,
K.
,
Honnery
,
D. R.
, and
Soria
,
J.
(
2014
). “
Coherent structure and sound production in the helical mode of a screeching axisymmetric jet
,”
J. Fluid Mech.
748
,
822
847
.
7.
Faranosov
,
G. A.
,
Goloviznin
,
V. M.
,
Karabasov
,
S. A.
,
Kondakov
,
V. G.
,
Kopiev
,
V. F.
, and
Zaitsev
,
M. A.
(
2013
). “
CABARET method on unstructured hexahedral grids for jet noise computation
,”
Comput. Fluids
88
,
165
179
.
8.
Ffowcs Williams
,
J. E.
, and
Hawkings
,
D. L.
(
1969
). “
Sound generation by turbulence and surfaces in arbitrary motion
,”
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci.
264
(
1151
),
321
342
.
9.
Ghahramani
,
S.
(
2005
).
Fundamentals of Probability, with Stochastic Processes
, 3rd ed. (
CRC
,
Boca Raton, FL
).
10.
Goloviznin
,
V. M.
, and
Samarskii
,
A. A.
(
1998
). “
Finite difference approximation of convective transport equation with space splitting time derivative
,”
Matem. Mod.
10
(
1
),
86
100
(in Russian).
11.
Goloviznin
,
V. M.
,
Zaitsev
,
M. A.
,
Karabasov
,
S. A.
, and
Korotkin
,
I. A.
(
2013
).
New CFD Algorithms for Multiprocessor Computer Systems
(
Moscow State University
,
Moscow
) (in Russian).
12.
Harper-Bourne
,
M.
(
2003
). “
Jet noise turbulence measurements
,” in
Proceedings of the 9th AIAA/CEAS Aeroacoustics Conference
, May 12–14, Hilton Head, SC, AIAA 2003-3214.
13.
Harper-Bourne
,
M.
, and
Fisher
,
M. J.
(
1973
). “
The noise from shock waves in supersonic jets
,” in
Proceedings of the AGARD Conference on Noise Mechanisms
, September 19–21, Brussels, Belgium, pp.
1
13
.
14.
Kalyan
,
A.
, and
Karabasov
,
S. A.
(
2017
). “
Broad band shock associated noise predictions in axisymmetric and asymmetric jets using an improved turbulence scale model
,”
J. Sound Vib.
394
,
392
417
.
15.
Karabasov
,
S. A.
, and
Goloviznin
,
V. M.
(
2009
). “
Compact accurately boundary adjusting high-resolution technique for fluid dynamics
,”
J. Comput. Phys.
228
,
7426
7451
.
16.
Khavaran
,
A.
, and
Bridges
,
J.
(
2009a
). “
SHJAR jet noise data and power spectral laws
,” NASA/TM-2009-215608 (
National Aeronautics and Space Administration
,
Washington, DC
).
17.
Khavaran
,
A.
, and
Bridges
,
J.
(
2009b
). “
Development of jet noise power spectral laws using SHJAR data
,” in
Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference)
, May 11–13, Miami, FL, AIAA 2009-3378.
18.
Lighthill
,
M. J.
(
1952
). “
On sound generated aerodynamically. I. General theory
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
211
(
1107
),
564
587
.
19.
Lighthill
,
M. J.
(
1954
). “
On sound generated aerodynamically. II. Turbulence as a source of sound
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
222
(
1148
),
1
32
.
20.
Markesteijn
,
A. P.
,
Gryazev
,
V.
,
Karabasov
,
S. A.
,
Ayupov
,
R. S.
,
Benderskiy
,
L. A.
, and
Lyubimov
,
D. A.
(
2020
). “
Flow and noise predictions of coaxial jets
,”
AIAA J.
58
(
12
),
5280
5293
.
21.
Markesteijn
,
A. P.
, and
Karabasov
,
S. A.
(
2018a
). “
GPU CABARET solutions for the CoJeN jet noise experiment
,” in
Proceedings of the 2018 AIAA/CEAS Aeroacoustics Conference, AIAA AVIATION Forum
, June 25–29, Atlanta, GA, AIAA 2018-3921.
22.
Markesteijn
,
A. P.
, and
Karabasov
,
S. A.
(
2018b
). “
CABARET solutions on graphics processing units for NASA jets: Grid sensitivity and unsteady inflow condition effect
,”
C. R. Mecanique
346
,
948
963
.
23.
Markesteijn
,
A. P.
, and
Karabasov
,
S. A.
(
2019
). “
Simulations of co-axial jet flows on graphics processing units: The flow and noise analysis
,”
R. Soc. Philos. Trans. A
377
,
20190083
.
24.
Markesteijn
,
A. P.
,
Semiletov
,
V. A.
,
Karabasov
,
S. A.
,
Tan
,
D. J.
,
Wong
,
M.
,
Honnery
,
D.
, and
Edgington-Mitchell
,
D. M.
(
2017
). “
Supersonic jet noise: An investigation into noise generation mechanisms using large eddy simulation and high-resolution PIV data
,” in
Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference
, June 5–7, Denver, CO, AIAA 2017-3029.
25.
Miller
,
S. A. E.
(
2013
). “
Towards a comprehensive model of jet noise using an acoustic analogy and steady RANS solution
,” in
Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference
, May 27–29, Berlin, Germany, AIAA 2013-2278.
26.
Mitchell
,
D. M.
,
Honnery
,
D. R.
, and
Soria
,
J.
(
2013
). “
Near-field structure of underexpanded elliptic jets
,”
Exp. Fluids
54
(
7
),
1578
.
27.
Morris
,
P. J.
, and
Miller
,
S. A. E.
(
2010
). “
Prediction of broadband shock-associated noise using Reynolds-averaged Navier–Stokes computational fluid dynamics
,”
AIAA J.
48
(
12
),
2931
2944
.
28.
Pack
,
D. C.
(
1950
). “
A note on Prandtl's formula for the wave length of a supersonic jet
,”
Q. J. Mech. Appl. Math.
3
,
173
181
.
29.
Paliath
,
U.
, and
Morris
,
P. J.
(
2005
). “
Prediction of jet noise from circular beveled nozzles
,” in
Proceedings of the 11th AIAA/CEAS Aeroacoustics Conference
, May 23–25, Monterey, CA, AIAA 2005-3096.
30.
Pérez Arroyo
,
C.
,
Daviller
,
G.
,
Puigt
,
G.
,
Airiau
,
C.
, and
Moreau
,
S.
(
2019
). “
Identification of temporal and spatial signatures of broadband shock-associated noise
,”
Shock Waves
29
,
117
134
.
31.
Pérez Arroyo
,
C.
, and
Moreau
,
S.
(
2019
). “
Azimuthal mode analysis of broadband shock-associated noise in an under-expanded axisymmetric jet
,”
J. Sound Vib.
449
,
64
83
.
32.
Pineau
,
P.
, and
Bogey
,
C.
(
2019
). “
Steepened Mach waves near supersonic jets: Study of azimuthal structure and generation process using conditional averages
,”
J. Fluid Mech.
880
,
594
619
.
33.
Powell
,
A.
(
1956
). “
Structural fatigue due to jet noise
,”
J. Acoust. Soc. Am.
28
(
4
),
782
.
34.
Semiletov
,
V. A.
, and
Karabasov
,
S. A.
(
2013
). “
CABARET scheme with conservation-flux asynchronous time-stepping for nonlinear aeroacoustics problems
,”
J. Comput. Phys.
253
(
15
),
157
165
.
35.
Semiletov
,
V. A.
, and
Karabasov
,
S. A.
(
2018
). “
A volume integral implementation of the Goldstein generalised acoustic analogy for unsteady flow simulations
,”
J. Fluid Mech.
853
,
461
487
.
36.
Semiletov
,
V. A.
,
Yakovlev
,
P. G.
,
Karabasov
,
S. A.
,
Faranosov
,
G. A.
, and
Kopiev
,
V. F.
(
2016
). “
Jet and jet-wing noise modelling based on the CABARET MILES flow solver and the Ffowcs Williams–Hawkings method
,”
Int. J. Aeroacoust.
15
(
6
),
631
645
.
37.
Shur
,
M. L.
,
Spalart
,
P. R.
, and
Strelets
,
M. K.
(
2005
). “
Noise prediction for increasingly complex jets. Part I: Methods and tests. Part II: Applications
,”
Int. J. Aeroacoust.
4
(
34
),
21366
.
38.
Shur
,
M.
,
Spalart
,
P.
,
Strelets
,
M.
, and
Garbaruk
,
A.
(
2006
). “
Further steps in LES-based noise prediction for complex jets
,” in
Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit
, January 9–12, Reno, NV, AIAA 2006-485.
39.
Tam
,
C. K. W.
(
1975
). “
Supersonic jet noise generated by large scale disturbances
,”
J. Sound Vib.
38
(
1
),
51
79
.
40.
Tam
,
C. K. W.
(
1987
). “
Stochastic model theory of broadband shock associated noise from supersonic jets
,”
J. Sound. Vib.
116
(
2
),
265
302
.
41.
Tam
,
C. K. W.
, and
Auriault
,
L.
(
1999
). “
Jet mixing noise from fine-scale turbulence
,”
AIAA J.
37
(
2
),
145
153
.
42.
Tam
,
C. K. W.
, and
Chen
,
K. C.
(
1979
). “
A statistical model of turbulence in two-dimensional mixing layers
,”
J. Fluid Mech.
92
(
2
),
303
326
.
43.
Tam
,
C. K. W.
, and
Jackson
,
J. A.
(
1985
). “
A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets
,”
J. Fluid Mech.
153
,
123
149
.
44.
Tam
,
C. K. W.
, and
Tanna
,
H. K.
(
1982
). “
Shock associated noise of supersonic jets from convergent-divergent nozzles
,”
J. Sound Vib.
81
(
3
),
337
358
.
45.
Tan
,
D. J.
,
Honnery
,
D.
,
Kalyan
,
A.
,
Gryazev
,
V.
,
Karabasov
,
S. A.
, and
Edgington-Mitchell
,
D.
(
2019a
). “
Equivalent shock-associated noise source reconstruction of screeching under-expanded unheated round jets
,”
AIAA J.
57
(
3
),
1200
1215
.
46.
Tan
,
D. J.
,
Honnery
,
D.
,
Kalyan
,
A.
,
Gryazev
,
V.
,
Karabasov
,
S. A.
, and
Edgington-Mitchell
,
D.
(
2019b
). “
Correlation analysis of high-resolution particle image velocimetry data of screeching jets
,”
AIAA J.
57
,
735
748
.
47.
Tan
,
D. J.
,
Wong
,
M.
,
Honnery
,
D.
,
Edgington-Mitchell
,
D.
,
Kalyan
,
A.
,
Gryazev
,
V.
,
Markesteijn
,
A. P.
,
Karabasov
,
S. A.
, and
Semiletov
,
V. A.
(
2016
). “Supersonic axisymmetric jet noise collaboration.” Report, Queen Mary University of London.
48.
Tucker
,
P. G.
, and
Karabasov
,
S. A.
(
2009
). “
Unstructured grid solution of the eikonal equation for acoustics
,”
Int. J. Aeroacoust.
8
(
6
),
535
553
.
49.
van Dyke
,
M.
(
1975
).
Perturbation Methods in Fluid Mechanics
(
Parabolic Press
,
Stanford, CA
).
50.
Zorumski
,
W. E.
(
1982a
).
Aircraft Noise Prediction Program: Theoretical Manual: Part 1
, NASA TM-83199 (
National Aeronautics and Space Administration
,
Washington, DC
).
51.
Zorumski
,
W. E.
(
1982b
).
Aircraft Noise Prediction Program: Theoretical Manual: Part 2
, NASA TM-83199 (
National Aeronautics and Space Administration
,
Washington, DC
).
You do not currently have access to this content.