Time reversal (TR) is a signal processing technique often used to generate focusing at selected positions within reverberant environments. This study investigates the effect of the location of the focusing, with respect to the room wall boundaries, on the amplitude of the focusing and the uniformity of this amplitude when focusing at various room locations. This is done experimentally with eight sources and two reverberation chambers. The chambers are of differing dimensions and were chosen to verify the findings in different volume environments. Multiple spatial positions for the TR focusing are explored within the rooms' diffuse field, against a single wall, along a two-wall edge, and in the corners (three walls). Measurements of TR focusing at various locations within the room show that for each region of study, the peak amplitude of the focusing is quite uniform, and there is a notable and consistent increase in amplitude for each additional wall that is adjacent to the focal location. A numerical model was created to simulate the TR process in the larger reverberation chamber. This model returned results similar to those of the experiments, with spatial uniformity of focusing within the room and increases when the focusing is near adjacent walls.

1.
M.
Fink
, “
Time reversed acoustics
,”
Phys. Today
50
(
3
),
34
40
(
1997
).
2.
B. E.
Anderson
,
M.
Griffa
,
C.
Larmat
,
T. J.
Ulrich
, and
P. A.
Johnson
, “
Time reversal
,”
Acoust. Today
4
(
1
),
5
16
(
2008
).
3.
C. S.
Clay
and
B.
Anderson
, “
Matched signals: The beginnings of time reversal
,”
Proc. Meet. Acoust.
12
(
1
),
055001
(
2011
).
4.
A.
Parvulescu
and
C. S.
Clay
, “
Reproducibility of signal transmissions in the ocean
,”
Radio Electron. Eng.
29
(
4
),
223
228
(
1965
).
5.
H.-C.
Song
, “
An overview of underwater time-reversal communication
,”
IEEE J. Ocean. Eng.
41
(
3
),
644
655
(
2016
).
6.
A.
Sutin
and
H.
Salloum
, “
Prospective medical applications of nonlinear time reversal acoustics
,”
Proc. Meet. Acoust.
34
(
1
),
020003
(
2018
).
7.
G.
Montaldo
,
P.
Roux
,
A.
Derode
,
C.
Negreira
, and
M.
Fink
, “
Ultrasound shock wave generator with one-bit time reversal in a dispersive medium, application to lithotripsy
,”
Appl. Phys. Lett.
80
,
897
899
(
2002
).
8.
B. E.
Anderson
,
M.
Griffa
,
T. J.
Ulrich
,
P.-Y. L.
Bas
,
R. A.
Guyer
, and
P. A.
Johnson
, “
Crack localization and characterization in solid media using time reversal techniques
,” in
Proceedings of the 44th U.S. Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium
, Salt Lake City, UT (June 27–30,
2010
), ARMA-10-154.
9.
S. M.
Young
,
B. E.
Anderson
,
S. M.
Hogg
,
P.-Y. L.
Bas
, and
M. C.
Remillieux
, “
Nonlinearity from stress corrosion cracking as a function of chloride exposure time using the time reversed elastic nonlinearity diagnostic
,”
J. Acoust. Soc. Am.
145
(
1
),
382
391
(
2019
).
10.
B. E.
Anderson
,
L.
Pieczonka
,
M. C.
Remillieux
,
T. J.
Ulrich
, and
P.-Y. L.
Bas
, “
Stress corrosion crack depth investigation using the time reversed elastic nonlinearity diagnostic
,”
J. Acoust. Soc. Am.
141
(
1
),
EL76
EL81
(
2017
).
11.
C. S.
Larmat
,
R. A.
Guyer
, and
P. A.
Johnson
, “
Time-reversal methods in geophysics
,”
Phys. Today
63
(
8
),
31
35
(
2010
).
12.
J. V.
Candy
,
D. H.
Chambers
,
C. L.
Robbins
,
B. L.
Guidry
,
A. J.
Poggio
,
F.
Dowla
, and
C. A.
Hertzog
, “
Wideband multichannel time-reversal processing for acoustic communications in highly reverberant environments
,”
J. Acoust. Soc. Am.
120
(
2
),
838
851
(
2006
).
13.
J. V.
Candy
,
A. W.
Meyer
,
A. J.
Poggio
, and
B. L.
Guidry
, “
Time-reversal processing for an acoustic communications experiment in a highly reverberant environment
,”
J. Acoust. Soc. Am.
115
(
4
),
1621
1631
(
2004
).
14.
S.
Yon
,
M.
Tanter
, and
M.
Fink
, “
Sound focusing in rooms: The time-reversal approach
,”
J. Acoust. Soc. Am.
113
(
3
),
1533
1543
(
2003
).
15.
C. B.
Wallace
and
B. E.
Anderson
, “
High-amplitude time reversal focusing of airborne ultrasound to generate a focused nonlinear difference frequency
,”
J. Acoust. Soc. Am.
150
(
2
),
1411
1423
(
2021
).
16.
J.-L.
Thomas
,
F.
Wu
, and
M. M.
Fink
, “
Time reversal focusing applied to lithotripsy
,”
Ultrason. Imaging
18
(
2
),
106
121
(
1996
).
17.
G.
Ribay
,
J.
de Rosny
, and
M.
Fink
, “
Time reversal of noise sources in a reverberation room
,”
J. Acoust. Soc. Am.
117
(
5
),
2866
2872
(
2005
).
18.
C.
Draeger
and
M.
Fink
, “
One-channel time-reversal in chaotic cavities: Theoretical limits
,”
J. Acoust. Soc. Am.
105
(
2
),
611
617
(
1999
).
19.
A.
Derode
,
A.
Tourin
, and
M.
Fink
, “
Limits of time-reversal focusing through multiple scattering: Long-range correlation
,”
J. Acoust. Soc. Am.
107
(
6
),
2987
2998
(
2000
).
20.
M. H.
Denison
and
B. E.
Anderson
, “
Time reversal acoustics applied to rooms of various reverberation times
,”
J. Acoust. Soc. Am.
144
(
6
),
3055
3066
(
2018
).
21.
J. B.
Allen
and
D. A.
Berkley
, “
Image method for efficiently simulating small-room acoustics
,”
J. Acoust. Soc. Am.
65
(
4
),
943
950
(
1979
).
22.
F.
Ma
,
J.
Chen
,
J. H.
Wu
, and
H.
Jia
, “
Realizing broadband sub-wavelength focusing and a high intensity enhancement with a spacetime synergetic modulated acoustic prison
,”
J. Mater. Chem. C
8
(
28
),
9511
9519
(
2020
).
23.
F.
Ma
,
J.
Chen
, and
J. H.
Wu
, “
Experimental study on performance of time reversal focusing
,”
J. Phys. D Appl. Phys.
53
(
5
),
055302
(
2020
).
24.
M.
Kleiner
and
J.
Tichy
,
Acoustics of Small Rooms
(
CRC
,
New York
,
2017
), pp.
37
99
.
25.
M. L.
Willardson
,
B. E.
Anderson
,
S. M.
Young
,
M. H.
Denison
, and
B. D.
Patchett
, “
Time reversal focusing of high amplitude sound in a reverberation chamber
,”
J. Acoust. Soc. Am.
143
(
2
),
696
705
(
2018
).
26.
M. K.
Rollins
,
T. W.
Leishman
,
J. K.
Whiting
,
E. J.
Hunter
, and
D. J.
Eggett
, “
Effects of added absorption on the vocal exertions of talkers in a reverberant room
,”
J. Acoust. Soc. Am.
145
(
2
),
775
783
(
2019
).
27.
M. R.
Schroeder
, “
The ‘Schroeder frequency’ revisited
,”
J. Acoust. Soc. Am.
99
(
5
),
3240
3241
(
1996
).
28.
B. E.
Anderson
,
M.
Clemens
, and
M. L.
Willardson
, “
The effect of transducer directivity on properties of time reversal focusing
,”
J. Acoust. Soc. Am.
139
(
4
),
2083
2083
(
2016
).
29.
B.
Van Damme
,
K.
Van Den Abeele
,
Y.
Li
, and
O.
Bou Matar
, “
Time reversed acoustics techniques for elastic imaging in reverberant and nonreverberant media: An experimental study of the chaotic cavity transducer concept
,”
J. Appl. Phys.
109
,
104910
(
2011
).
30.
H.
Kuttruff
,
Room Acoustics
, 6th ed. (
CRC
,
Boca Raton, FL
,
2017
), pp.
66
69
.
31.
M. R.
Schroeder
and
K. H.
Kuttruff
, “
On frequency response curves in rooms: Comparison of experimental, theoretical, and Monte Carlo results for the average frequency spacing between maxima
,”
J. Acoust. Soc. Am.
34
(
1
),
76
80
(
1962
).
32.
ISO 3741:2010
, “
Sound power and energy in reverberant environments
” (
International Organization for Standardization
,
Geneva, Switzerland
,
2010
).
33.
M. R.
Schroeder
, “
New method of measuring reverberation time
,”
J. Acoust. Soc. Am.
37
(
3
),
409
412
(
1965
).
34.
M.
Tanter
,
J.
Thomas
, and
M.
Fink
, “
Time reversal and the inverse filter
,”
J. Acoust. Soc. Am.
108
(
1
),
223
234
(
2000
).
You do not currently have access to this content.