Time reversal (TR) focusing of airborne ultrasound in a room is demonstrated. Various methods are employed to increase the amplitude of the focus. These methods include creating a small wooden box (or chamber) to act as a miniature reverberation chamber, using multiple sources, and using the clipping processing method. The use of a beam blocker to make the sources more omnidirectional is also examined, and it is found that for most source/microphone orientations, the use of a beam blocker increases the amplitude of the focus. A high-amplitude focus of 134 dB peak re 20 μPa sound pressure level with a center frequency of about 38 kHz is generated using TR. Using four sources centered at 36.1 kHz and another four sources centered at 39.6 kHz, nonlinear difference frequency content centered at 3.5 kHz is observed in the focus signal. The difference frequency amplitude grows quadratically with increasing primary frequency amplitude. When using beam blockers, the difference frequency content propagates away from the focal location with higher amplitude than when beam blockers are not used. This is likely due to the differences in the directionality of the converging waves during TR focusing.

1.
M.
Fink
, “
Time reversed acoustics
,”
Phys. Today
50
(
3
),
34
40
(
1997
).
2.
B. E.
Anderson
,
M.
Griffa
,
C.
Larmat
,
T. J.
Ulrich
, and
P. A.
Johnson
, “
Time reversal
,”
Acoust. Today
4
(
1
),
5
16
(
2008
).
3.
C.
Draeger
,
J.-C.
Aime
, and
M.
Fink
, “
One-channel time reversal in chaotic cavities: Experimental results
,”
J. Acoust. Soc. Am.
105
(
2
),
618
625
(
1999
).
4.
A.
Parvulescu
and
C. S.
Clay
, “
Reproducibility of signal transmissions in the ocean
,”
Radio Elec. Eng.
29
(
4
),
223
228
(
1965
).
5.
C. S.
Clay
and
B.
Anderson
, “
Matched signals: The beginnings of time reversal
,”
Proc. Mtgs. Acoust.
12
(
1
),
055001
(
2011
).
6.
J. V.
Candy
,
A. W.
Meyer
,
A. J.
Poggio
, and
B. L.
Guidry
, “
Time-reversal processing for an acoustic communications experiment in a highly reverberant environment
,”
J. Acoust. Soc. Am.
115
(
4
),
1621
1631
(
2004
).
7.
J. V.
Candy
,
A. J.
Poggio
,
D. H.
Chambers
,
B. L.
Guidry
,
C. L.
Robbins
, and
C. A.
Kent
, “
Multichannel time-reversal processing for acoustic communications in a highly reverberant environment
,”
J. Acoust. Soc. Am.
118
(
4
),
2339
2354
(
2005
).
8.
A. W.
Meyer
,
J. V.
Candy
, and
A. J.
Poggio
,
Time Reversal Signal Processing in Communications—a Feasibility Study
(
Lawrence Livermore National Laboratory Library
,
Livermore, CA
,
2002
).
9.
G.
Ribay
,
J.
de Rosny
, and
M.
Fink
, “
Time reversal of noise sources in a reverberation room
,”
J. Acoust. Soc. Am.
117
(
5
),
2866
2872
(
2005
).
10.
M. H.
Denison
and
B. E.
Anderson
, “
Time reversal acoustics applied to rooms of various reverberation times
,”
J. Acoust. Soc. Am.
144
(
6
),
3055
3066
(
2018
).
11.
P. E.
Simpson
and
B. E.
Anderson
, “
The performance of time reversal in elastic chaotic cavities as a function of volume and geometric shape of the cavity
,”
J. Acoust. Soc. Am.
150
(
1
),
526
539
(
2021
).
12.
M. L.
Willardson
,
B. E.
Anderson
,
S. M.
Young
,
M. H.
Denison
, and
B. D.
Patchett
, “
Time reversal focusing of high amplitude sound in a reverberation chamber
,”
J. Acoust. Soc. Am.
143
(
2
),
696
705
(
2018
).
13.
C.
Prada
,
E.
Kerbrat
,
D.
Cassereau
, and
M.
Fink
, “
Time reversal techniques in ultrasonic nondestructive testing of scattering media
,”
Inv. Prob.
18
(
6
),
1761
1773
(
2002
).
14.
B. E.
Anderson
,
L.
Pieczonka
,
M. C.
Remillieux
,
T. J.
Ulrich
, and
P.-Y.
Le Bas
, “
Stress corrosion crack depth investigation using the time reversed elastic nonlinearity diagnostic
,”
J. Acoust. Soc. Am.
141
(
1
),
EL76
EL81
(
2017
).
15.
S. M.
Young
,
B. E.
Anderson
,
S. M.
Hogg
,
P.-Y.
Le Bas
, and
M. C.
Remillieux
, “
Nonlinearity from stress corrosion cracking as a function of chloride exposure time using the time reversed elastic nonlinearity diagnostic
,”
J. Acoust. Soc. Am.
145
(
1
),
382
391
(
2019
).
16.
B. E.
Anderson
,
M. C.
Remillieux
,
P.-Y.
Le Bas
, and
T. J.
Ulrich
, “
Time reversal techniques
,” in
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
, edited by
T.
Kundu
(
Springer International Publishing
,
Cham, Switzerland
,
2019
), pp.
547
581
.
17.
N.
Smagin
,
A.
Trifonov
,
O.
Bou Matar
, and
V. V.
Aleshin
, “
Local damage detection by nonlinear coda wave interferometry combined with time reversal
,”
Ultrasonics
108
,
106226
(
2020
).
18.
G.
Montaldo
,
P.
Roux
,
A.
Derode
,
C.
Negreira
, and
M.
Fink
, “
Ultrasound shock wave generator with one-bit time reversal in a dispersive medium, application to lithotripsy
,”
Appl. Phys. Lett.
80
(
5
),
897
899
(
2002
).
19.
J.-L.
Thomas
,
F.
Wu
, and
M.
Fink
, “
Time reversal focusing applied to lithotripsy
,”
Ultrason. Imaging
18
(
2
),
106
121
(
1996
).
20.
J.-L.
Thomas
and
M.
Fink
, “
Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: Application to transskull therapy
,”
IEEE Trans. Ultrason. Ferr. Freq. Contr.
43
(
6
),
1122
1129
(
1996
).
21.
M.
Tanter
,
J.-L.
Thomas
, and
M.
Fink
, “
Focusing and steering through absorbing and aberrating layers: Application to ultrasonic propagation through the skull
,”
J. Acoust. Soc. Am.
103
(
5
),
2403
2410
(
1998
).
22.
S. M.
Young
,
B. E.
Anderson
,
M. L.
Willardson
,
P. E.
Simpson
, and
P.-Y.
Le Bas
, “
A comparison of impulse response modification techniques for time reversal with application to crack detection
,”
J. Acoust. Soc. Am.
145
(
5
),
3195
3207
(
2019
).
23.
P.-Y.
Le Bas
,
T. J.
Ulrich
,
B. E.
Anderson
, and
J. J.
Esplin
, “
Toward a high power non-contact acoustic source using time reversal
,”
Acoust. Soc. Am. ECHOES Newslett.
22
(
3
),
7
8
(
2012
).
24.
S.
Delrue
,
P.-Y.
Le Bas
,
T. J.
Ulrich
,
B.
Anderson
, and
K.
Van Den Abeele
, “
First simulations of the candy can concept for high amplitude non-contact excitation
,”
Proc. Mtgs. Acoust.
16
,
045019
(
2012
).
25.
B. E.
Anderson
,
T. J.
Ulrich
, and
P.-Y.
Le Bas
, “
Improving the focal quality of the time reversal acoustic noncontact source using a deconvolution operation
,”
Proc. Mtgs. Acoust.
19
,
030080
(
2013
).
26.
P.-Y.
Le Bas
,
T. J.
Ulrich
,
B. E.
Anderson
, and
J. J.
Esplin
, “
A high amplitude, time reversal acoustic non-contact excitation (TRANCE)
,”
J. Acoust. Soc. Am.
134
(
1
),
EL52
EL56
(
2013
).
27.
S.
Delrue
,
K.
Van Den Abeele
,
P.-Y.
Le Bas
,
T. J.
Ulrich
, and
B.
Anderson
, “
Simulations of a high amplitude air coupled source based on time reversal
,” in
Proceedings of the International Congress on Ultrasonics
, 2–5 May 2013, pp.
591
596
.
28.
M. C.
Remillieux
,
B. E.
Anderson
,
T. J.
Ulrich
,
P.-Y. L.
Bas
,
M. R.
Haberman
, and
J.
Zhu
, “
Review of air-coupled transduction for nondestructive testing and evaluation
,”
Acoust. Today
10
(
3
),
36
45
(
2014
).
29.
P.-Y.
Le Bas
,
M. C.
Remillieux
,
L.
Pieczonka
,
J. A.
Ten Cate
,
B. E.
Anderson
, and
T. J.
Ulrich
, “
Damage imaging in a laminated composite plate using an air-coupled time reversal mirror
,”
Appl. Phys. Lett.
107
,
184102
(
2015
).
30.
C.
Shi
,
Y.
Kajikawa
, and
W.
Gan
, “
An overview of directivity control methods of the parametric array loudspeaker
,”
APSIPA Trans. Sig. Info. Proc.
3
,
e20
(
2014
).
31.
P. J.
Westervelt
, “
Parametric end‐fire array
,”
J. Acoust. Soc. Am.
32
(
7
),
934
935
(
1960
).
32.
M. B.
Bennett
and
D. T.
Blackstock
, “
Parametric array in air
,”
J. Acoust. Soc. Am.
57
(
3
),
562
568
(
1975
).
33.
P. J.
Westervelt
, “
Parametric acoustic array
,”
J. Acoust. Soc. Am.
35
(
4
),
535
537
(
1963
).
34.
P. J.
Westervelt
, “
Scattering of sound by sound
,”
J. Acoust. Soc. Am.
29
(
8
),
934
935
(
1957
).
35.
U.
Ingard
and
D. C.
Pridmore‐Brown
, “
Scattering of sound by sound
,”
J. Acoust. Soc. Am.
28
(
3
),
367
369
(
1956
).
36.
J. L. S.
Bellin
and
R. T.
Beyer
, “
Scattering of sound by sound
,”
J. Acoust. Soc. Am.
32
(
3
),
339
341
(
1960
).
37.
L. W.
Dean
, “
Interactions between sound waves
,”
J. Acoust. Soc. Am.
34
(
8
),
1039
1044
(
1962
).
38.
J. J.
Truchard
, “
Parametric receiving array and the scattering of sound by sound
,”
J. Acoust. Soc. Am.
64
(
1
),
280
285
(
1978
).
39.
J. A.
TenCate
, “
Scattering of sound by sound: Nonlinear interaction of collinear and noncollinear sound beams
,” Ph.D. dissertation,
Univ. of Texas
,
Austin, TX
,
1992
.
40.
P. J.
Westervelt
, “
Answer to criticism of experiments on the scattering of sound by sound
,”
J. Acoust. Soc. Am.
95
(
5
),
2865
(
1994
).
41.
P. J.
Westervelt
, “
Answer to criticism of my treatment of nonscattering of sound by sound
,”
J. Acoust. Soc. Am.
95
(
5
),
2865
(
1994
).
42.
P. J.
Westervelt
, “
Scattering of sound by sound within the interaction zone
,”
J. Acoust. Soc. Am.
96
(
5
),
3320
(
1994
).
43.
M. F.
Hamilton
and
J. A.
TenCate
, “
Sum and difference frequency generation due to noncollinear wave interaction in a rectangular duct
,”
J. Acoust. Soc. Am.
81
(
6
),
1703
1712
(
1987
).
44.
B. E.
Anderson
,
T. J.
Ulrich
, and
P.-Y.
Le Bas
, “
Comparison and visualization of focusing wave fields from various time reversal techniques in elastic media
,”
J. Acoust. Soc. Am.
134
(
6
),
EL527
EL533
(
2013
).
45.
B.
Van Damme
,
K.
Van Den Abeele
,
Y.
Li
, and
O.
Bou Matar
, “
Time reversed acoustics techniques for elastic imaging in reverberant and nonreverberant media: An experimental study of the chaotic cavity transducer concept
,”
J. Appl. Phys.
109
(
10
),
104910
(
2011
).
46.
B. E.
Anderson
,
M.
Clemens
, and
M. L.
Willardson
, “
The effect of transducer directivity on time reversal focusing
,”
J. Acoust. Soc. Am.
142
(
1
),
EL95
EL101
(
2017
).
47.
A.
Derode
,
A.
Tourin
, and
M.
Fink
, “
Ultrasonic pulse compression with one-bit time reversal through multiple scattering
,”
J. Appl. Phys.
85
(
9
),
6343
6352
(
1999
).
48.
M. R.
Shroeder
, “
New method of measuring reverberation time
,”
J. Acoust. Soc. Am.
37
(
3
),
409
412
(
1965
).
49.
ISO 3382:1997(E):
Acoustics—Measurement of the Reverberation Time of Rooms with Reference to Other Acoustical Parameters
(
International Organization for Standardization
,
Geneva, Switzerland
,
1997
).
50.
M. H.
Denison
and
B. E.
Anderson
, “
The effects of source placement on time reversal focusing in rooms
,”
Appl. Acoust.
156
,
279
288
(
2019
).
51.
T.
Jenny
and
B. E.
Anderson
, “
Ultrasonic anechoic chamber qualification: Accounting for atmospheric absorption and transducer directivity
,”
J. Acoust. Soc. Am.
130
(
2
),
EL69
EL75
(
2011
).
52.
B. D.
Patchett
,
B. E.
Anderson
, and
A. D.
Kingsley
, “
The impact of room location on time reversal focusing amplitudes
,”
J. Acoust. Soc. Am.
150
(
2
),
1424
1433
(
2021
).
53.
N.
Roy
,
H.
Hassanieh
, and
R. R.
Choudhury
, “
BackDoor: Making microphones hear inaudible sounds
,”
in MobiSys. '17
,
Niagara Falls, NY
(June 19–23,
2017
), pp.
2
14
.
54.
C.
Ye
,
Z.
Kuang
,
M.
Wu
, and
J.
Yang
, “
Development of an acoustic filter for parametric loudspeaker in air
,”
Jap. J. Appl. Phys.
50
(
7
),
07HE18
(
2011
).
55.
P.
Ji
and
J.
Yang
, “
An experimental investigation about parameters' effects on spurious sound in parametric loudspeaker
,”
Appl. Acoust.
148
,
67
74
(
2019
).
56.
M.
Griffa
,
B. E.
Anderson
,
R. A.
Guyer
,
T. J.
Ulrich
, and
P. A.
Johnson
, “
Investigation of the robustness of time reversal acoustics in solid media through the reconstruction of temporally symmetric sources
,”
J. Phys. D. Appl. Phys.
41
(
8
),
085415
(
2008
).
57.
M.
Scalerandi
,
M.
Griffa
, and
P. A.
Johnson
, “
Robustness of computational time reversal imaging in media with elastic constant uncertainties
,”
J. Appl. Phys.
106
(
11
),
114911
(
2009
).
You do not currently have access to this content.