Self-sustained oscillations of the vocal folds (VFs) during phonation are the result of the energy exchange between the airflow and VF tissue. Understanding this mechanism requires accurate investigation of the aerodynamic pressures acting on the VF surface during oscillation. A self-oscillating silicone VF model was used in a hemilaryngeal flow facility to measure the time-varying pressure distribution along the inferior-superior thickness of the VF and at four discrete locations in the anterior-posterior direction. It was found that the intraglottal pressures during the opening and closing phases of the glottis are highly dependent on three-dimensional and unsteady flow behaviors. The measured aerodynamic pressures and estimates of the medial surface velocity were used to compute the intraglottal energy transfer from the airflow to the VFs. The energy was greatest at the anterior-posterior midline and decreased significantly toward the anterior/posterior endpoints. The findings provide insight into the dynamics of the VF oscillation and potential causes of some VF disorders.

1.
R.
Wegel
, “
Theory of vibration of the larynx 1
,”
Bell Syst. Tech. J.
9
(
1
),
207
227
(
1930
).
2.
J.
Van den Berg
,
J.
Zantema
, and
P.
Doornenbal
, Jr.
, “
On the air resistance and the Bernoulli effect of the human larynx
,”
J. Acoust. Soc. Am.
29
(
5
),
626
631
(
1957
).
3.
S. L.
Thomson
,
L.
Mongeau
, and
S. H.
Frankel
, “
Aerodynamic transfer of energy to the vocal folds
,”
J. Acoust. Soc. Am.
118
(
3
),
1689
1700
(
2005
).
4.
I. R.
Titze
, “
Mean intraglottal pressure in vocal fold oscillation
,”
J. Phonetics
14
(
3-4
),
359
364
(
1986
).
5.
I. R.
Titze
, “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
(
4
),
1536
1552
(
1988
).
6.
I. R.
Titze
, “
Where has all the power gone? Energy production and loss in vocalization
,”
Speech Commun.
101
,
26
33
(
2018
).
7.
X.
Pelorson
,
A.
Hirschberg
,
A.
Wijnands
, and
H.
Bailliet
, “
Description of the flow through in-vitro models of the glottis during phonation
,”
Acta Acust.
3
,
191
202
(
1995
).
8.
A.
Hirschberg
,
X.
Pelorson
,
G.
Hofmans
,
R.
Van Hassel
, and
A.
Wijnands
, “
Starting transient of the flow through an in-vitro model of the vocal folds
,” in
Vocal Fold Physiology: Controlling Complexity and Chaos
(
Singular Publishing Group
,
San Diego, CA
,
1996
), pp.
31
46
.
9.
G.
Hofmans
,
G.
Groot
,
M.
Ranucci
,
G.
Graziani
, and
A.
Hirschberg
, “
Unsteady flow through in-vitro models of the glottis
,”
J. Acoust. Soc. Am.
113
(
3
),
1658
1675
(
2003
).
10.
M.
Triep
,
C.
Brücker
, and
W.
Schröder
, “
High-speed PIV measurements of the flow downstream of a dynamic mechanical model of the human vocal folds
,”
Exp. Fluids
39
(
2
),
232
245
(
2005
).
11.
B. D.
Erath
and
M. W.
Plesniak
, “
An investigation of bimodal jet trajectory in flow through scaled models of the human vocal tract
,”
Exp. Fluids
40
(
5
),
683
696
(
2006
).
12.
B. D.
Erath
and
M. W.
Plesniak
, “
The occurrence of the coanda effect in pulsatile flow through static models of the human vocal folds
,”
J. Acoust. Soc. Am.
120
(
2
),
1000
1011
(
2006
).
13.
B. D.
Erath
and
M. W.
Plesniak
, “
An investigation of jet trajectory in flow through scaled vocal fold models with asymmetric glottal passages
,”
Exp. Fluids
41
(
5
),
735
748
(
2006
).
14.
B. D.
Erath
and
M. W.
Plesniak
, “
Viscous flow features in scaled-up physical models of normal and pathological vocal phonation
,”
Int. J. Heat Fluid Flow
31
(
3
),
468
481
(
2010
).
15.
B. D.
Erath
and
M. W.
Plesniak
, “
An investigation of asymmetric flow features in a scaled-up driven model of the human vocal folds
,”
Exp. Fluids
49
(
1
),
131
146
(
2010
).
16.
L.
Mongeau
,
N.
Franchek
,
C. H.
Coker
, and
R. A.
Kubli
, “
Characteristics of a pulsating jet through a small modulated orifice, with application to voice production
,”
J. Acoust. Soc. Am.
102
(
2
),
1121
1133
(
1997
).
17.
J. B.
Park
and
L.
Mongeau
, “
Experimental investigation of the influence of a posterior gap on glottal flow and sound
,”
J. Acoust. Soc. Am.
124
(
2
),
1171
1179
(
2008
).
18.
F.
Alipour
and
R. C.
Scherer
, “
Pulsatile airflow during phonation: An excised larynx model
,”
J. Acoust. Soc. Am.
97
(
2
),
1241
1248
(
1995
).
19.
F.
Alipour
,
R.
Scherer
, and
V.
Patel
, “
An experimental study of pulsatile flow in canine larynges
,”
J. Fluids Eng.
117
(
4
),
577
581
(
1995
).
20.
G. S.
Berke
,
D. M.
Moore
,
P. A.
Monkewitz
,
D. G.
Hanson
, and
B. R.
Gerratt
, “
A preliminary study of particle velocity during phonation in an in vivo canine model
,”
J. Voice
3
(
4
),
306
313
(
1989
).
21.
L.
Oren
,
S.
Khosla
, and
E.
Gutmark
, “
Intraglottal geometry and velocity measurements in canine larynges
,”
J. Acoust. Soc. Am.
135
(
1
),
380
388
(
2014
).
22.
F.
Alipour
,
D. A.
Berry
, and
I. R.
Titze
, “
A finite-element model of vocal-fold vibration
,”
J. Acoust. Soc. Am.
108
(
6
),
3003
3012
(
2000
).
23.
F.
Alipour
and
R. C.
Scherer
, “
Flow separation in a computational oscillating vocal fold model
,”
J. Acoust. Soc. Am.
116
(
3
),
1710
1719
(
2004
).
24.
G. Z.
Decker
and
S. L.
Thomson
, “
Computational simulations of vocal fold vibration: Bernoulli versus Navier–Stokes
,”
J. Voice
21
(
3
),
273
284
(
2007
).
25.
C.
Zhang
,
W.
Zhao
,
S. H.
Frankel
, and
L.
Mongeau
, “
Computational aeroacoustics of phonation, Part II: Effects of flow parameters and ventricular folds
,”
J. Acoust. Soc. Am.
112
(
5
),
2147
2154
(
2002
).
26.
W.
Zhao
,
S.
Frankel
, and
L.
Mongeau
, “
Numerical simulations of sound from confined pulsating axisymmetric jets
,”
AIAA J.
39
(
10
),
1868
1874
(
2001
).
27.
W.
Zhao
,
C.
Zhang
,
S. H.
Frankel
, and
L.
Mongeau
, “
Computational aeroacoustics of phonation, Part I: Computational methods and sound generation mechanisms
,”
J. Acoust. Soc. Am.
112
(
5
),
2134
2146
(
2002
).
28.
X.
Zheng
,
Q.
Xue
,
R.
Mittal
, and
S.
Beilamowicz
, “
A coupled sharp-interface immersed boundary-finite-element method for flow-structure interaction with application to human phonation
,”
J. Biomech. Eng.
132
(
11
),
111003
(
2010
).
29.
X.
Zheng
,
R.
Mittal
, and
S.
Bielamowicz
, “
A computational study of asymmetric glottal jet deflection during phonation
,”
J. Acoust. Soc. Am.
129
(
4
),
2133
2143
(
2011
).
30.
X.
Zheng
,
R.
Mittal
,
Q.
Xue
, and
S.
Bielamowicz
, “
Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model
,”
J. Acoust. Soc. Am.
130
(
1
),
404
415
(
2011
).
31.
R.
Mittal
,
B. D.
Erath
, and
M. W.
Plesniak
, “
Fluid dynamics of human phonation and speech
,”
Annu. Rev. Fluid Mech.
45
,
437
467
(
2013
).
32.
N.
Binh
and
J.
Gauffin
, “
Aerodynamic measurements in an enlarged static laryngeal model
,”
STL-QPSR
24
(
2-3
),
036
060
(
1983
).
33.
R. C.
Scherer
and
C.-G.
Guo
, “
Laryngeal modeling: Translaryngeal pressure for a model with many glottal shapes
,” in
First International Conference on Spoken Language Processing
(
1990
).
34.
R. C.
Scherer
,
D.
Shinwari
,
K. J.
De Witt
,
C.
Zhang
,
B. R.
Kucinschi
, and
A. A.
Afjeh
, “
Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees
,”
J. Acoust. Soc. Am.
109
(
4
),
1616
1630
(
2001
).
35.
R. C.
Scherer
,
D.
Shinwari
,
K. J.
De Witt
,
C.
Zhang
,
B. R.
Kucinschi
, and
A. A.
Afjeh
, “
Intraglottal pressure distributions for a symmetric and oblique glottis with a uniform duct (L)
,”
J. Acoust. Soc. Am.
112
(
4
),
1253
1256
(
2002
).
36.
S.
Li
,
R. C.
Scherer
,
M.
Wan
,
S.
Wang
, and
H.
Wu
, “
The effect of glottal angle on intraglottal pressure
,”
J. Acoust. Soc. Am.
119
(
1
),
539
548
(
2006
).
37.
S.
Li
,
R. C.
Scherer
,
M.
Wan
,
S.
Wang
, and
H.
Wu
, “
Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions
,”
J. Acoust. Soc. Am.
119
(
5
),
3003
3010
(
2006
).
38.
S.
Li
,
R. C.
Scherer
,
M.
Wan
,
S.
Wang
, and
B.
Song
, “
Intraglottal pressure: A comparison between male and female larynxes
,”
J. Voice
34
(
6
),
813
822
(
2019
).
39.
S.
Li
,
R. C.
Scherer
,
M.
Wan
, and
S.
Wang
, “
The effect of entrance radii on intraglottal pressure distributions in the divergent glottis
,”
J. Acoust. Soc. Am.
131
(
2
),
1371
1377
(
2012
).
40.
L. P.
Fulcher
,
R. C.
Scherer
, and
T.
Powell
, “
Pressure distributions in a static physical model of the uniform glottis: Entrance and exit coefficients
,”
J. Acoust. Soc. Am.
129
(
3
),
1548
1553
(
2011
).
41.
R. C.
Scherer
,
K. J.
De Witt
, and
B. R.
Kucinschi
, “
The effect of exit radii on intraglottal pressure distributions in the convergent glottis
,”
J. Acoust. Soc. Am.
110
(
5
),
2267
2269
(
2001
).
42.
K.
Ishizaka
and
J. L.
Flanagan
, “
Synthesis of voiced sounds from a two-mass model of the vocal cords
,”
Bell Syst. Tech. J.
51
(
6
),
1233
1268
(
1972
).
43.
J. B.
Park
and
L.
Mongeau
, “
Instantaneous orifice discharge coefficient of a physical, driven model of the human larynx
,”
J. Acoust. Soc. Am.
121
(
1
),
442
455
(
2007
).
44.
M. H.
Krane
,
M.
Barry
, and
T.
Wei
, “
Dynamics of temporal variations in phonatory flow
,”
J. Acoust. Soc. Am.
128
(
1
),
372
383
(
2010
).
45.
C.
Vilain
,
X.
Pelorson
,
C.
Fraysse
,
M.
Deverge
,
A.
Hirschberg
, and
J.
Willems
, “
Experimental validation of a quasi-steady theory for the flow through the glottis
,”
J. Sound Vib.
276
(
3-5
),
475
490
(
2004
).
46.
P.
Šidlof
,
O.
Doaré
,
O.
Cadot
, and
A.
Chaigne
, “
Measurement of flow separation in a human vocal folds model
,”
Exp. Fluids
51
(
1
),
123
136
(
2011
).
47.
L.
Oren
,
S.
Khosla
, and
E.
Gutmark
, “
Intraglottal pressure distribution computed from empirical velocity data in canine larynx
,”
J. Biomech.
47
(
6
),
1287
1293
(
2014
).
48.
L.
Oren
,
E.
Gutmark
, and
S.
Khosla
, “
Intraglottal velocity and pressure measurements in a hemilarynx model
,”
J. Acoust. Soc. Am.
137
(
2
),
935
943
(
2015
).
49.
A.
Pirnia
,
E. A.
Browning
,
S. D.
Peterson
, and
B. D.
Erath
, “
Discrete and periodic vortex loading on a flexible plate; application to energy harvesting and voiced speech production
,”
J. Sound Vib.
433
,
476
492
(
2018
).
50.
J. S.
Drechsel
and
S. L.
Thomson
, “
Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model
,”
J. Acoust. Soc. Am.
123
(
6
),
4434
4445
(
2008
).
51.
S.
Khosla
,
S.
Muruguppan
,
E.
Gutmark
, and
R.
Scherer
, “
Vortical flow field during phonation in an excised canine larynx model
,”
Ann. Otol., Rhinol., Laryngol.
116
(
3
),
217
228
(
2007
).
52.
B. D.
Erath
,
S. D.
Peterson
,
M.
Zañartu
,
G. R.
Wodicka
, and
M. W.
Plesniak
, “
A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds
,”
J. Acoust. Soc. Am.
130
(
1
),
389
403
(
2011
).
53.
B. D.
Erath
,
S. D.
Peterson
,
M.
Zañartu
,
G. R.
Wodicka
,
K. C.
Stewart
, and
M. W.
Plesniak
, “
Response to ‘Comments on ‘A theoretical model of the pressure distributions arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds’’ [J. Acoust. Soc. Am. 130, 389–403 (2011)]
,”
J. Acoust. Soc. Am.
134
(
2
),
913
916
(
2013
).
54.
B. D.
Erath
,
S. D.
Peterson
,
K. S.
Weiland
,
M. W.
Plesniak
, and
M.
Zañartu
, “
An acoustic source model for asymmetric intraglottal flow with application to reduced-order models of the vocal folds
,”
PloS One
14
(
7
),
e0219914
(
2019
).
55.
X.
Zheng
,
J.
Seo
,
V.
Vedula
,
T.
Abraham
, and
R.
Mittal
, “
Computational modeling and analysis of intracardiac flows in simple models of the left ventricle
,”
Eur. J. Mech.-B/Fluids
35
,
31
39
(
2012
).
56.
Q.
Xue
,
X.
Zheng
,
R.
Mittal
, and
S.
Bielamowicz
, “
Computational study of effects of tension imbalance on phonation in a three-dimensional tubular larynx model
,”
J. Voice
28
(
4
),
411
419
(
2014
).
57.
R. C.
Scherer
,
S.
Torkaman
,
B. R.
Kucinschi
, and
A. A.
Afjeh
, “
Intraglottal pressures in a three-dimensional model with a non-rectangular glottal shape
,”
J. Acoust. Soc. Am.
128
(
2
),
828
838
(
2010
).
58.
F.
Alipour
and
R. C.
Scherer
, “
Dynamic glottal pressures in an excised hemilarynx model
,”
J. Voice
14
(
4
),
443
454
(
2000
).
59.
P.
Bhattacharya
and
T.
Siegmund
, “
Validation of a flow–structure-interaction computation model of phonation
,”
J. Fluids Struct.
48
,
169
187
(
2014
).
60.
C. F.
de Luzan
,
L.
Oren
,
E.
Gutmark
, and
S. M.
Khosla
, “
Quantification of the intraglottal pressure induced by flow separation vortices using large eddy simulation
,”
J. Voice
(in press,
2020
).
61.
M.
Motie-Shirazi
,
M.
Zañartu
,
S. D.
Peterson
,
D. D.
Mehta
,
J. B.
Kobler
,
R. E.
Hillman
, and
B. D.
Erath
, “
Toward development of a vocal fold contact pressure probe: Sensor characterization and validation using synthetic vocal fold models
,”
Appl. Sci.
9
(
15
),
3002
(
2019
).
62.
M.
Zañartu
,
L.
Mongeau
, and
G. R.
Wodicka
, “
Influence of acoustic loading on an effective single mass model of the vocal folds
,”
J. Acoust. Soc. Am.
121
(
2
),
1119
1129
(
2007
).
63.
J. C.
Ho
,
M.
Zañartu
, and
G. R.
Wodicka
, “
An anatomically based, time-domain acoustic model of the subglottal system for speech production
,”
J. Acoust. Soc. Am.
129
(
3
),
1531
1547
(
2011
).
64.
B. H.
Story
, “
Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002
,”
J. Acoust. Soc. Am.
123
(
1
),
327
335
(
2008
).
65.
R. W.
Chan
and
M. L.
Rodriguez
, “
A simple-shear rheometer for linear viscoelastic characterization of vocal fold tissues at phonatory frequencies
,”
J. Acoust. Soc. Am.
124
(
2
),
1207
1219
(
2008
).
66.
K. A.
Stevens
, “
Geometry and material properties of vocal fold models
,” MS thesis,
Brigham Young University
,
Provo, UT
,
2015
.
67.
K.
Comley
and
N.
Fleck
, “
The compressive response of porcine adipose tissue from low to high strain rate
,”
Int. J. Impact Eng.
46
,
1
10
(
2012
).
68.
Y. B.
Min
,
I. R.
Titze
, and
F.
Alipour-Haghighi
, “
Stress-strain response of the human vocal ligament
,”
Ann. Otol., Rhinol., Laryngol.
104
(
7
),
563
569
(
1995
).
69.
F.
Alipour
and
S.
Vigmostad
, “
Measurement of vocal folds elastic properties for continuum modeling
,”
J. Voice
26
(
6
),
816.e21
(
2012
).
70.
D. K.
Chhetri
,
Z.
Zhang
, and
J.
Neubauer
, “
Measurement of Young's modulus of vocal folds by indentation
,”
J. Voice
25
,
1
7
(
2011
).
71.
L.
Oren
,
D.
Dembinski
,
E.
Gutmark
, and
S.
Khosla
, “
Characterization of the vocal fold vertical stiffness in a canine model
,”
J. Voice
28
(
3
),
297
304
(
2014
).
72.
G. R.
Dion
,
P. G.
Coelho
,
S.
Teng
,
M. N.
Janal
,
M. R.
Amin
, and
R. C.
Branski
, “
Dynamic nanomechanical analysis of the vocal fold structure in excised larynges
,”
Laryngoscope
127
(
7
),
E225
E230
(
2017
).
73.
R. W.
Chan
and
I. R.
Titze
, “
Viscoelastic shear properties of human vocal fold mucosa: Measurement methodology and empirical results
,”
J. Acoust. Soc. Am.
106
,
2008
2021
(
1999
).
74.
R. W.
Chan
,
M.
Fu
,
L.
Young
, and
N.
Tirunagari
, “
Relative contributions of collagen and elastin to elasticity of the vocal fold under tension
,”
Ann. Biomed. Eng.
35
(
8
),
1471
1483
(
2007
).
75.
R. E.
Kania
,
S.
Hans
,
D. M.
Hartl
,
P.
Clement
,
L.
Crevier-Buchman
, and
D. F.
Brasnu
, “
Variability of electroglottographic glottal closed quotients: Necessity of standardization to obtain normative values
,”
Arch. Otolaryngol., Head Neck Surg.
130
(
3
),
349
352
(
2004
).
76.
J.
Lohscheller
,
J. G.
Švec
, and
M.
Döllinger
, “
Vocal fold vibration amplitude, open quotient, speed quotient and their variability along glottal length: Kymographic data from normal subjects
,”
Logopedics Phoniatr. Vocol.
38
(
4
),
182
192
(
2013
).
77.
M.
Doellinger
and
D. A.
Berry
, “
Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation
,”
J. Voice
20
(
3
),
401
413
(
2006
).
78.
I. R.
Titze
and
F.
Alipour
,
The Myoelastic Aerodynamic Theory of Phonation
(
National Center for Voice and Speech
,
Denver, CO
,
2006
).
79.
R. J.
Baken
and
R. F.
Orlikoff
,
Clinical Measurement of Speech and Voice
(
Cengage Learning
,
Boston, MA
,
2000
).
80.
D. D.
Mehta
,
J. B.
Kobler
,
S. M.
Zeitels
,
M.
Zañartu
,
B. D.
Erath
,
M.
Motie-Shirazi
,
S. D.
Peterson
,
R. H.
Petrillo
, and
R. E.
Hillman
, “
Toward development of a vocal fold contact pressure probe: Bench-top validation of a dual-sensor probe using excised human larynx models
,”
Appl. Sci.
9
(
20
),
4360
(
2019
).
81.
J. J.
Jiang
and
I. R.
Titze
, “
Measurement of vocal fold intraglottal pressure and impact stress
,”
J. Voice
8
,
132
144
(
1994
).
82.
J. J.
Jiang
,
Y.
Zhang
,
M. P.
Kelly
,
E. T.
Bieging
, and
M. R.
Hoffman
, “
An automatic method to quantify mucosal waves via videokymography
,”
Laryngoscope
118
(
8
),
1504
1510
(
2008
).
83.
K. L.
Syndergaard
,
S.
Dushku
, and
S. L.
Thomson
, “
Electrically conductive synthetic vocal fold replicas for voice production research
,”
J. Acoust. Soc. Am.
142
(
1
),
EL63
EL68
(
2017
).
84.
M.
Motie-Shirazi
,
M.
Zañartu
,
S. D.
Peterson
, and
B. D.
Erath
, “
Vocal fold dynamics in a synthetic self-oscillating model: Contact pressure and dissipated-energy dose
,”
J. Acoust. Soc. Am.
150
(
1
),
478
489
(
2021
).
85.
See supplementary material at https://www.scitation.org/doi/suppl/10.1121/10.0005882 for a video showing the progression of the intraglottal pressure distribution.
86.
L. P.
Fulcher
,
R. C.
Scherer
,
K. J.
De Witt
,
P.
Thapa
,
Y.
Bo
, and
B. R.
Kucinschi
, “
Pressure distributions in a static physical model of the hemilarynx: Measurements and computations
,”
J. Voice
24
(
1
),
2
20
(
2010
).
87.
M.
Döllinger
,
D. A.
Berry
, and
D. W.
Montequin
, “
The influence of epilarynx area on vocal fold dynamics
,”
Otolaryngol., Head Neck Surg.
135
(
5
),
724
729
(
2006
).
88.
P. R.
Murray
and
S. L.
Thomson
, “
Vibratory responses of synthetic, self-oscillating vocal fold models
,”
J. Acoust. Soc. Am.
132
(
5
),
3428
3438
(
2012
).
89.
M.
Zañartu
,
G. E.
Galindo
,
B. D.
Erath
,
S. D.
Peterson
,
G. R.
Wodicka
, and
R. E.
Hillman
, “
Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction
,”
J. Acoust. Soc. Am.
136
(
6
),
3262
3271
(
2014
).
90.
I. R.
Titze
,
J. G.
Svec
, and
P. S.
Popolo
, “
Vocal dose measures
,”
J. Speech, Lang., Hear. Res.
46
,
919
932
(
2003
).
91.
I. R.
Titze
and
E. J.
Hunter
, “
Comparison of vocal vibration-dose measures for potential-damage risk criteria
,”
J. Speech, Lang., Hear. Res.
58
(
5
),
1425
1439
(
2015
).
92.
F. G.
Dikkers
and
P. G.
Nikkels
, “
Benign lesions of the vocal folds: Histopathology and phonotrauma
,”
Ann. Otol., Rhinol., Laryngol.
104
(
9
),
698
703
(
1995
).
93.
B. D.
Erath
,
M.
Zañartu
,
K. C.
Stewart
,
M. W.
Plesniak
,
D. E.
Sommer
, and
S. D.
Peterson
, “
A review of lumped-element models of voiced speech
,”
Speech Commun.
55
(
5
),
667
690
(
2013
).
94.
F.
Alipour
and
R. C.
Scherer
, “
Pressure and velocity profiles in a static mechanical hemilarynx model
,”
J. Acoust. Soc. Am.
112
(
6
),
2996
3003
(
2002
).

Supplementary Material

You do not currently have access to this content.