In the context of building acoustics and the acoustic diagnosis of an existing room, it introduces and investigates a new approach to estimate the mean absorption coefficients solely from a room impulse response (RIR). This inverse problem is tackled via virtually supervised learning, namely, the RIR-to-absorption mapping is implicitly learned by regression on a simulated dataset using artificial neural networks. Simple models based on well-understood architectures are the focus of this work. The critical choices of geometric, acoustic, and simulation parameters, which are used to train the models, are extensively discussed and studied while keeping in mind the conditions that are representative of the field of building acoustics. Estimation errors from the learned neural models are compared to those obtained with classical formulas that require knowledge of the room's geometry and reverberation times. Extensive comparisons made on a variety of simulated test sets highlight different conditions under which the learned models can overcome the well-known limitations of the diffuse sound field hypothesis underlying these formulas. Results obtained on real RIRs measured in an acoustically configurable room show that at 1 kHz and above, the proposed approach performs comparably to classical models when reverberation times can be reliably estimated and continues to work even when they cannot.

1.
Allard
,
J. F.
, and
Aknine
,
A.
(
1985
). “
Acoustic impedance measurements with a sound intensity meter
,”
Appl. Acoust.
18
,
69
75
.
2.
Allard
,
J. F.
, and
Sieben
,
B.
(
1985
). “
Measurements of acoustic impedance in a free field with two microphones and a spectrum analyzer
,”
J. Acoust. Soc. Am.
77
,
1617
1618
.
3.
Allen
,
J. B.
, and
Berkley
,
D. A.
(
1979
). “
Image method for efficiently simulating small-room acoustics
,”
J. Acoust. Soc. Am.
65
(
4
),
943
950
.
4.
Ando
,
Y.
(
1968
). “
The interference pattern method of measuring the complex reflection coefficient of acoustic materials at oblique incidence
,” in
Proc. 6 th International Congress on Acoustics
(
ICA
,
Tokyo, Japan
).
5.
Aoshima
,
N.
(
1981
). “
Computer-generated pulse signal applied for sound measurement
,”
J. Acoust. Soc. Am.
69
,
1484
1488
.
6.
ASTM
(
2006
). E1050-98. “
Standard test method for impedance and absorption of acoustical materials using a tube, two microphones, and a digital frequency analysis system
” (
American Society for Testing and Materials
,
Philadelphia, PA
).
7.
Barry
,
T.
(
1974
). “
Measurement of the absorption spectrum using correlation/spectral density techniques
,”
J. Acoust. Soc. Am.
55
,
1349
1351
.
8.
Bianco
,
M. J.
,
Gerstoft
,
P.
,
Traer
,
J.
,
Ozanich
,
E.
,
Roch
,
M. A.
,
Gannot
,
S.
, and
Deledalle
,
C.-A.
(
2019
). “
Machine learning in acoustics: Theory and applications
,”
J. Acoust. Soc. Am.
146
(
5
),
3590
3628
.
9.
Borish
,
J.
(
1984
). “
Extension of the image model to arbitrary polyhedra
,”
J. Acoust. Soc. Am.
75
(
6
),
1827
1836
.
10.
Botteldooren
,
D.
(
1995
). “
Finite-difference time-domain simulation of low-frequency room acoustic problems
,”
J. Acoust. Soc. Am.
98
(
6
),
3302
3308
.
11.
Brandão
,
E.
,
Lenzi
,
A.
, and
Paul
,
S.
(
2015
). “
A review of the in situ impedance and sound absorption measurement techniques
,”
Acta Acust. Acust.
101
(
3
),
443
463
.
12.
Chakrabarty
,
S.
, and
Habets
,
E. A.
(
2017
). “
Broadband doa estimation using convolutional neural networks trained with noise signals
,” in
2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)
(
IEEE
,
New York
), pp.
136
140
.
13.
Champoux
,
Y.
, and
L'espérance
,
A.
(
1988
). “
Numerical evaluation of errors associated with the measurement of acoustic impedance in a free field using two microphones and a spectrum analyzer
,”
J. Acoust. Soc. Am.
84
,
30
38
.
14.
Champoux
,
Y.
,
Nicolas
,
J.
, and
Allard
,
J. F.
(
1988
). “
Measurement of acoustic impedance in a free field at low frequencies
,”
J. Sound Vib.
125
,
313
323
.
15.
Chung
,
J.
, and
Blaser
,
D.
(
1980a
). “
Transfer function method of measuring in-duct acoustic properties. I. Theory
,”
J. Acoust. Soc. Am.
68
(
3
),
907
913
.
16.
Chung
,
J.
, and
Blaser
,
D.
(
1980b
). “
Transfer function method of measuring in-duct acoustic properties. II: Experiment
,”
J. Acoust. Soc. Am.
68
(
3
),
914
921
.
17.
Cramond
,
A. J.
, and
Don
,
C. G.
(
1984
). “
Reflection of impulses as a method of determining acoustic impedance
,”
J. Acoust. Soc. Am.
75
,
382
389
.
18.
Davies
,
J. C.
, and
Mulholland
,
K. A.
(
1979
). “
An impulse method of measuring normal impedance at oblique incidence
,”
J. Sound Vib.
67
,
135
149
.
19.
Deecke
,
V. B.
, and
Janik
,
V. M.
(
2006
). “
Automated categorization of bioacoustic signals: Avoiding perceptual pitfalls
,”
J. Acoust. Soc. Am.
119
(
1
),
645
653
.
20.
Deleforge
,
A.
,
Forbes
,
F.
, and
Horaud
,
R.
(
2015a
). “
Acoustic space learning for sound-source separation and localization on binaural manifolds
,”
Int. J. Neural Syst.
25
(
01
),
1440003
.
21.
Deleforge
,
A.
,
Horaud
,
R.
,
Schechner
,
Y. Y.
, and
Girin
,
L.
(
2015b
). “
Co-localization of audio sources in images using binaural features and locally-linear regression
,”
IEEE/ACM Trans. Audio, Speech, Lang. Process.
23
(
4
),
718
731
.
22.
Di Carlo
,
D.
,
Deleforge
,
A.
, and
Bertin
,
N.
(
2019
). “
MIRAGE: 2D source localization using microphone pair augmentation with echoes
,” in
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
IEEE
,
New York
), pp.
775
779
.
23.
Di Carlo
,
D.
,
Tandeitnik
,
P.
,
Foy
,
C.
,
Deleforge
,
A.
,
Bertin
,
N.
, and
Gannot
,
S.
(
2021
). “
dechorate: A calibrated room impulse response database for echo-aware signal processing
,” arXiv:2104.13168.
24.
Farina
,
A.
(
2000
). “
Simultaneous measurement of impulse response and distortion with a swept-sine technique
,” in
Audio Engineering Society Convention 108
(
Audio Engineering Society
,
New York
).
25.
Farina
,
A.
(
2007
). “
Advancements in impulse response measurements by sine sweeps
,” in
Audio Engineering Society Convention 122
(
Audio Engineering Society
,
New York
).
26.
Gamper
,
H.
, and
Tashev
,
I. J.
(
2018
). “
Blind reverberation time estimation using a convolutional neural network
,” in
2018 16th International Workshop on Acoustic Signal Enhancement (IWAENC)
(
IEEE
, New York), pp.
136
140
.
27.
Garai
,
M.
(
1993
). “
Measurement of the sound-absorption coefficient in situ: The reflection method using periodic pseudorandom sequences of maximum length
,”
Appl. Acoust.
39
,
119
139
.
28.
Gaultier
,
C.
,
Kataria
,
S.
, and
Deleforge
,
A.
(
2017
). “
Vast: The virtual acoustic space traveler dataset
,” in
International Conference on Latent Variable Analysis and Signal Separation
(
Springer
,
New York
), pp.
68
79
.
29.
Genovese
,
A. F.
,
Gamper
,
H.
,
Pulkki
,
V.
,
Raghuvanshi
,
N.
, and
Tashev
,
I. J.
(
2019
). “
Blind room volume estimation from single-channel noisy speech
,” in
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
IEEE
,
New York
), pp.
231
235
.
30.
Gradišek
,
A.
,
Slapničar
,
G.
,
Šorn
,
J.
,
Luštrek
,
M.
,
Gams
,
M.
, and
Grad
,
J.
(
2017
). “
Predicting species identity of bumblebees through analysis of flight buzzing sounds
,”
Bioacoustics
26
(
1
),
63
76
.
31.
Guidorzia
,
P.
,
Barbaresia
,
L.
,
D'Orazioa
,
D.
, and
Garai
,
M.
(
2015
). “
Impulse responses measured with MLS or swept-sine signals applied to architectural acoustics: An in-depth analysis of the two methods and some case studies of measurements inside theaters
,” in
6th International Building Physics Conference
(
Elsevier
,
Amsterdam, Netherlands
).
32.
Habets
,
E. A.
(
2006
). “
Room impulse response generator
,”
Technische Universiteit Eindhoven, Tech. Rep.
2
(
2.4
),
1
.
33.
He
,
W.
,
Motlicek
,
P.
, and
Odobez
,
J.-M.
(
2019
). “
Adaptation of multiple sound source localization neural networks with weak supervision and domain-adversarial training
,” in
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
IEEE
,
New York
), pp.
770
774
.
34.
Hodgson
,
M.
(
1994
). “
When is diffuse-field theory accurate?
,”
Can. Acoust.
22
(
3
),
41
42
.
35.
Hodgson
,
M.
(
1996
). “
When is diffuse-field theory applicable?
,”
Appl. Acoust.
49
(
3
),
197
201
.
36.
Hollin
,
K. A.
, and
Jones
,
M. H.
(
1977
). “
The measurement of sound absorption coefficient in situ by a correlation technique
,”
Acustica
37
,
103
110
.
37.
Ingård
,
U.
, and
Bolt
,
R. H.
(
1951
). “
A free field method of measuring the absorption coefficient of acoustic materials
,”
J. Acoust. Soc. Am.
23
,
509
516
.
38.
ISO
(
2001
). 10534:2001. “
Acoustics. Determination of sound absorption coefficient and impedance in impedance tubes. Part 1: Method using standing wave. Part 2: Transfer function method
” (International Organization for Standardization, Geneva, Switzerland).
39.
ISO
(
2003
). 354:2003. “
Acoustics—Measurement of sound absorption in a reverberation room
” (International Organization for Standardization, Geneva, Switzerland).
40.
ISO
(
2008
). 3382-2:2008. “
Acoustics—Measurement of room acoustic parameters—Part 2: Reverberation time in ordinary rooms
” (International Organization for Standardization, Geneva, Switzerland).
41.
Kataria
,
S.
,
Gaultier
,
C.
, and
Deleforge
,
A.
(
2017
). “
Hearing in a shoe-box: Binaural source position and wall absorption estimation using virtually supervised learning
,” in
2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
IEEE
,
New York
), pp.
226
230
.
42.
Kim
,
C.
,
Misra
,
A.
,
Chin
,
K.
,
Hughes
,
T.
,
Narayanan
,
A.
,
Sainath
,
T.
, and
Bacchiani
,
M.
(
2017
). “
Generation of large-scale simulated utterances in virtual rooms to train deep-neural networks for far-field speech recognition in google home
,”
Interspeech 2017
(
ISCA
,
Stockholm, Sweden
), pp. 379–383.
43.
Kingma
,
D. P.
, and
Ba
,
J.
(
2014
). “
Adam: A method for stochastic optimization
,” arXiv:1412.6980.
44.
Kulowski
,
A.
(
1985
). “
Algorithmic representation of the ray tracing technique
,”
Appl. Acoust.
18
(
6
),
449
469
.
45.
Kuttruff
,
H.
(
2009
).
Room Acoustics
, 5th ed. (
Spon
,
Oxfordshire, England
).
46.
Lefort
,
R.
,
Real
,
G.
, and
Drémeau
,
A.
(
2017
). “
Direct regressions for underwater acoustic source localization in fluctuating oceans
,”
Appl. Acoust.
116
,
303
310
.
47.
Li
,
J. F.
, and
Hodgson
,
M.
(
1997
). “
Use of pseudo-random sequences and a single microphone to measure surface impedance at oblique incidence
,”
J. Acoust. Soc. Am.
102
,
2200
2210
.
48.
Luo
,
Y.
, and
Mesgarani
,
N.
(
2018
). “
Tasnet: Time-domain audio separation network for real-time, single-channel speech separation
,” in
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
IEEE
,
New York
), pp.
696
700
.
49.
Mesaros
,
A.
,
Heittola
,
T.
,
Diment
,
A.
,
Elizalde
,
B.
,
Shah
,
A.
,
Vincent
,
E.
,
Raj
,
B.
, and
Virtanen
,
T.
(
2017
). “
Dcase 2017 challenge setup: Tasks, datasets and baseline system
,” in
DCASE 2017-Workshop on Detection and Classification of Acoustic Scenes and Events
.
50.
Mesaros
,
A.
,
Heittola
,
T.
, and
Virtanen
,
T.
(
2019
). “
Acoustic scene classification in dcase 2019 challenge: Closed and open set classification and data mismatch setups
,”.
51.
Minten
,
M.
,
Cops
,
A.
, and
Lauriks
,
W.
(
1988
). “
Absorption characteristics of an acoustic material at oblique incidence measured with the two-microphone technique
,”
J. Sound Vib.
120
,
499
510
.
52.
Müller
,
S.
, and
Massarani
,
P.
(
2001
). “
Transfer-function measurement with sweeps. Director's cut including previously unreleased material and some corrections
,”
J. Audio Eng. Soc.
49
(
6
),
443
471
.
53.
Niu
,
H.
,
Reeves
,
E.
, and
Gerstoft
,
P.
(
2017
). “
Source localization in an ocean waveguide using supervised machine learning
,”
J. Acoust. Soc. Am.
142
(
3
),
1176
1188
.
54.
Nobile
,
M. A.
, and
Hayek
,
S. I.
(
1985
). “
Acoustic propagation over an impedance plane
,”
J. Acoust. Soc. Am.
78
,
1325
1336
.
55.
Nolan
,
M.
(
2020
). “
Estimation of angle-dependent absorption coefficients from spatially distributed in situ measurements
,”
J. Acoust. Soc. Am.
147
(
2
),
EL119
EL124
.
56.
Nolan
,
M.
,
Fernandez-Grande
,
E.
,
Brunskog
,
J.
, and
Jeong
,
C.-H.
(
2018
). “
A wavenumber approach to quantifying the isotropy of the sound field in reverberant spaces
,”
J. Acoust. Soc. Am.
143
(
4
),
2514
2526
.
57.
Okuzono
,
T.
,
Otsuru
,
T.
,
Tomiku
,
R.
, and
Okamoto
,
N.
(
2014
). “
A finite-element method using dispersion reduced spline elements for room acoustics simulation
,”
Appl. Acoust.
79
,
1
8
.
58.
Parsons
,
S.
, and
Jones
,
G.
(
2000
). “
Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks
,”
J. Exp. Biol.
203
(
17
),
2641
2656
.
59.
Peterson
,
P. M.
(
1986
). “
Simulating the response of multiple microphones to a single acoustic source in a reverberant room
,”
J. Acoust. Soc. Am.
80
(
5
),
1527
1529
.
60.
Pietrzyk
,
A.
(
1998
). “
Computer modeling of the sound field in small rooms
,” in
Audio Engineering Society Conference: 15th International Conference: Audio, Acoustics & Small Spaces
(
Audio Engineering Society
,
New York
).
61.
Prawda
,
K.
,
Schlecht
,
S. J.
, and
Välimäki
,
V.
(
2020
). “
Evaluation of reverberation time models with variable acoustics
,” in
18th Sound and Music Computing Conference
(
Axea sas/SMC Network
,
Torino, Italy
).
62.
Rathsam
,
J.
, and
Rafaely
,
B.
(
2015
). “
Analysis of absorption in situ with a spherical microphone array
,”
Appl. Acoust.
89
,
273
280
.
63.
Richard
,
A.
,
Fernandez-Grande
,
E.
,
Brunskog
,
J.
, and
Jeong
,
C.-H.
(
2017
). “
Estimation of surface impedance at oblique incidence based on sparse array processing
,”
J. Acoust. Soc. Am.
141
(
6
),
4115
4125
.
64.
Rife
,
D.
, and
Vanderkooy
,
J.
(
1999
). “
Transfer-function measurement with maximum length sequences
,”
J. Audio Eng. Soc.
37
(
6
),
419
444
.
65.
Samarasinghe
,
P. N.
,
Abhayapala
,
T. D.
,
Lu
,
Y.
,
Chen
,
H.
, and
Dickins
,
G.
(
2018
). “
Spherical harmonics based generalized image source method for simulating room acoustics
,”
J. Acoust. Soc. Am.
144
(
3
),
1381
1391
.
66.
Scheibler
,
R.
,
Bezzam
,
E.
, and
Dokmanić
,
I.
(
2018
). “
Pyroomacoustics: A python package for audio room simulation and array processing algorithms
,” in
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(
IEEE
,
New York
), pp.
351
355
.
67.
Schimmel
,
S. M.
,
Muller
,
M. F.
, and
Dillier
,
N.
(
2009
). “
A fast and accurate ‘shoebox’ room acoustics simulator
,” in
2009 IEEE International Conference on Acoustics, Speech and Signal Processing
(
IEEE
,
New York
), pp.
241
244
.
68.
Schröder
,
D.
(
2011
).
Physically Based Real-Time Auralization of Interactive Virtual Environments
(
Logos
,
Berlin
), Vol.
11
.
69.
Schroeder
,
M. R.
(
1965
). “
New method of measuring reverberation time
,”
J. Acoust. Soc. Am.
37
,
409
412
.
70.
Schroeder
,
M. R.
(
1979
). “
Integrated-impulse method measuring sound decay without using impulses
,”
J. Acoust. Soc. Am.
66
(
2
),
497
500
.
71.
Schroeder
,
M. R.
(
1996
). “
The Schroeder frequency revisited
,”
J. Acoust. Soc. Am.
99
,
3240
3241
.
72.
Sides
,
D. J.
, and
Mulholland
,
K. A.
(
1971
). “
The variation of normal layer impedance with angle of incidence
,”
J. Sound Vib.
14
,
139
142
.
73.
Stan
,
G.-B.
,
Embrechts
,
J.-J.
, and
Archambeau
,
D.
(
2002
). “
Comparison of different impulse response measurement techniques
,”
J. Audio Eng. Soc.
50
(
4
),
249
262
.
74.
Suzuki
,
Y.
,
Asano
,
F.
,
Kim
,
H.
, and
Sone
,
T.
(
1995
). “
An optimum computer-generated pulse signal suitable for the measurement of very long impulse responses
,”
J. Acoust. Soc. Am.
97
(
2
),
1119
1123
.
75.
Tamura
,
M.
(
1990
). “
Spatial Fourier transform method of measuring reflection coefficients at oblique incidence. I: Theory and numerical examples
,”
J. Acoust. Soc. Am.
88
(
5
),
2259
2264
.
76.
Torras-Rosell
,
A.
, and
Jacobsen
,
F.
(
2010
). “
Measuring long impulse responses with pseudorandom sequences and sweep signals
,” in
Internoise
,
Lisbon, Portugal
.
77.
Vorländer
,
M.
, and
Mommertz
,
E.
(
2000
). “
Definition and measurement of random-incidence scattering coefficients
,”
Appl. Acoust.
60
(
2
),
187
199
.
78.
Wabnitz
,
A.
,
Epain
,
N.
,
Jin
,
C.
, and
Van Schaik
,
A.
(
2010
). “
Room acoustics simulation for multichannel microphone arrays
,” in
Proceedings of the International Symposium on Room Acoustics
(
ICA
,
Melbourne, Australia
), pp.
1
6
.
79.
Yu
,
W.
, and
Kleijn
,
W. B.
(
2021
). “
Room acoustical parameter estimation from room impulse responses using deep neural networks
,”
IEEE/ACM Trans. Audio, Speech, Lang. Process.
29
,
436
447
.
80.
Yuzawa
,
M.
(
1975
). “
A method of obtaining the oblique incident sound absorption coefficient through an on-the-spot measurement
,”
Appl. Acoust.
8
,
27
41
.
You do not currently have access to this content.