With limited fundamental frequency (F0) cues, cochlear implant (CI) users recognize Mandarin tones using amplitude envelope. This study investigated whether tone recognition training with amplitude envelope enhancement may improve tone recognition and cue weighting with CIs. Three groups of CI-simulation listeners received training using vowels with amplitude envelope modified to resemble F0 contour (enhanced-amplitude-envelope training), training using natural vowels (natural-amplitude-envelope training), and exposure to natural vowels without training, respectively. Tone recognition with natural and enhanced amplitude envelope cues and cue weighting of amplitude envelope and F0 contour were measured in pre-, post-, and retention-tests. It was found that with similar pre-test performance, both training groups had better tone recognition than the no-training group after training. Only enhanced-amplitude-envelope training increased the benefits of amplitude envelope enhancement in the post- and retention-tests than in the pre-test. Neither training paradigm increased the cue weighting of amplitude envelope and F0 contour more than stimulus exposure. Listeners attending more to amplitude envelope in the pre-test tended to have better tone recognition with enhanced amplitude envelope cues before training and improve more in tone recognition after enhanced-amplitude-envelope training. The results suggest that auditory training and speech enhancement may bring maximum benefits to CI users when combined.

1.
Ananthakrishnan
,
S.
,
Luo
,
X.
, and
Krishnan
,
A.
(
2017
). “
Human frequency following responses to vocoded speech
,”
Ear Hear.
38
(
5
),
e256
e267
.
2.
Anwyl-Irvine
,
A.
,
Massonnié
,
J.
,
Flitton
,
A.
,
Kirkham
,
N.
, and
Evershed
,
J.
(
2020
). “
Gorilla in our midst: An online behavioral experiment builder
,”
Behav. Res. Meth.
52
,
388
407
.
3.
Boersma
,
P.
, and
Weenink
,
D.
(
2019
). “
Praat: Doing phonetics by computer
(version 6.0.56) [computer program],” http://www.praat.org/ (Last viewed 7/1/2019).
4.
Chandrasekaran
,
B.
,
Sampath
,
P. D.
, and
Wong
,
P. C. M.
(
2010
). “
Individual variability in cue-weighting and lexical tone learning
,”
J. Acoust. Soc. Am.
128
(
1
),
456
465
.
5.
Chang
,
Y.-P.
,
Chang
,
R. Y.
,
Lin
,
C.-Y.
, and
Luo
,
X.
(
2016
). “
Mandarin tone and vowel recognition in cochlear implant users: Effects of talker variability and bimodal hearing
,”
Ear Hear.
37
(
3
),
271
281
.
6.
Cheng
,
X.
,
Liu
,
Y.
,
Shu
,
Y.
,
Tao
,
D.-D.
,
Wang
,
B.
,
Yuan
,
Y.
,
Galvin
,
J. J.
,
Fu
,
Q.-J.
, and
Chen
,
B.
(
2018
). “
Music training can improve music and speech perception in pediatric Mandarin-speaking cochlear implant users
,”
Trends Hear.
22
,
2331216518759214
.
7.
Deroche
,
M. L. D.
,
Lu
,
H. P.
,
Lin
,
Y. S.
,
Chatterjee
,
M.
, and
Peng
,
S. C.
(
2019
). “
Processing of acoustic information in lexical tone production and perception by pediatric cochlear implant recipients
,”
Front. Neurosci.
13
,
1
17
.
8.
Friesen
,
L. M.
,
Shannon
,
R. V.
,
Baskent
,
D.
, and
Wang
,
X.
(
2001
). “
Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants
,”
J. Acoust. Soc. Am.
110
(
2
),
1150
1163
.
9.
Fu
,
Q.-J.
, and
Zeng
,
F.-G.
(
2000
). “
Identification of temporal envelope cues in Chinese tone recognition
,”
Asia Pacific J. Speech Lang. Hear.
5
,
45
57
.
10.
Fu
,
Q.-J.
,
Zeng
,
F.-G.
,
Shannon
,
R. V.
, and
Soli
,
S. D.
(
1998
). “
Importance of tonal envelope cues in Chinese speech recognition
,”
J. Acoust. Soc. Am.
104
(
1
),
505
510
.
11.
Galvin
,
J. J.
,
Fu
,
Q.-J.
, and
Nogaki
,
G.
(
2007
). “
Melodic contour identification by cochlear implant listeners
,”
Ear Hear.
28
(
3
),
302
319
.
12.
Geurts
,
L.
, and
Wouters
,
J.
(
2001
). “
Coding of the fundamental frequency in continuous interleaved sampling processors for cochlear implants
,”
J. Acoust. Soc. Am.
109
(
2
),
713
726
.
13.
Gonzalez
,
J.
, and
Oliver
,
J. C.
(
2005
). “
Gender and speaker identification as a function of the number of channels in spectrally reduced speech
,”
J. Acoust. Soc. Am.
118
(
1
),
461
470
.
14.
Green
,
T.
,
Faulkner
,
A.
, and
Rosen
,
S.
(
2004
). “
Enhancing temporal cues to voice pitch in continuous interleaved sampling cochlear implants
,”
J. Acoust. Soc. Am.
116
(
4
),
2298
2310
.
15.
Greenwood
,
D. D.
(
1990
). “
A cochlear frequency-position function for several species—29 years later
,”
J. Acoust. Soc. Am.
87
(
6
),
2592
2605
.
16.
Huang
,
W.
,
Wong
,
L. L. N.
,
Chen
,
F.
,
Liu
,
H.
, and
Liang
,
W.
(
2020
). “
Effects of fundamental frequency contours on sentence recognition in Mandarin-speaking children with cochlear implants
,”
J. Speech Lang. Hear. Res.
11
,
3855
3864
.
17.
Iverson
,
P.
,
Hazan
,
V.
, and
Bannister
,
K.
(
2005
). “
Phonetic training with acoustic cue manipulations: A comparison of methods for teaching English /r/-/l/ to Japanese adults
,”
J. Acoust. Soc. Am.
118
(
5
),
3267
3278
.
18.
Luo
,
X.
, and
Fu
,
Q.-J.
(
2004
). “
Enhancing Chinese tone recognition by manipulating amplitude envelope: Implications for cochlear implants
,”
J. Acoust. Soc. Am.
116
(
6
),
3659
3667
.
19.
Luo
,
X.
,
Fu
,
Q.-J.
, and
Galvin
,
J. J.
(
2007
). “
Vocal emotion recognition by normal-hearing listeners and cochlear implant users
,”
Trends Amplif.
11
(
4
),
301
315
.
20.
Luo
,
X.
,
Fu
,
Q.-J.
,
Wei
,
C.-G.
, and
Cao
,
K.-L.
(
2008
). “
Speech recognition and temporal amplitude modulation processing by Mandarin-speaking cochlear implant users
,”
Ear Hear.
29
(
6
),
957
970
.
21.
Luo
,
X.
,
Fu
,
Q. J.
,
Wu
,
H. P.
, and
Hsu
,
C. J.
(
2009
). “
Concurrent-vowel and tone recognition by Mandarin-speaking cochlear implant users
,”
Hearing Res.
256
(
1–2
),
75
84
.
22.
Luo
,
X.
,
Galvin
,
J. J.
, and
Fu
,
Q.-J.
(
2010
). “
Effects of stimulus duration on amplitude modulation processing with cochlear implants
,”
J. Acoust. Soc. Am.
127
(
2
),
EL23
L29
.
23.
Nasreddine
,
Z. S.
,
Phillips
,
N. A.
,
Bédirian
,
V.
,
Charbonneau
,
S.
,
Whitehead
,
V.
,
Collin
,
I.
,
Cummings
,
J. L.
, and
Chertkow
,
H.
(
2005
). “
The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment
,”
J. Am. Geriatrics Soc.
53
(
4
),
695
699
.
24.
Oxenham
,
A. J.
(
2008
). “
Pitch perception and auditory stream segregation: Implications for hearing loss and cochlear implants
,”
Trends Amplif.
12
(
4
),
316
331
.
25.
Peng
,
S.-C.
,
Chatterjee
,
M.
, and
Lu
,
N.
(
2012
). “
Acoustic cue integration in speech intonation recognition with cochlear implants
,”
Trends Amplif.
16
(
2
),
67
82
.
26.
Peng
,
S.-C.
,
Lu
,
H.-P.
,
Lu
,
N.
,
Lin
,
Y.-S.
,
Deroche
,
M. L. D.
, and
Chatterjee
,
M.
(
2017
). “
Processing of acoustic cues in lexical-tone identification by pediatric cochlear-implant recipients
,”
J. Speech Lang. Hear. Res.
60
(
5
),
1223
1235
.
27.
Peng
,
S.-C.
,
Lu
,
N.
, and
Chatterjee
,
M.
(
2009
). “
Effects of cooperating and conflicting cues on speech intonation recognition by cochlear implant users and normal hearing listeners
,”
Audiol. Neurotol.
14
(
5
),
327
337
.
28.
Peng
,
S.-C.
,
Tomblin
,
J. B.
, and
Turner
,
C. W.
(
2008
). “
Production and perception of speech intonation in pediatric cochlear implant recipients and individuals with normal hearing
,”
Ear Hear.
29
(
3
),
336
351
.
29.
Ping
,
L.
,
Wang
,
N.
,
Tang
,
G.
,
Lu
,
T.
,
Yin
,
L.
,
Tu
,
W.
, and
Fu
,
Q.
(
2017
). “
Implementation and preliminary evaluation of ‘C-tone’: A novel algorithm to improve lexical tone recognition in Mandarin-speaking cochlear implant users
,”
Cochlear Implants Int.
18
(
5
),
240
249
.
30.
Shannon
,
R. V.
,
Zeng
,
F. G.
,
Kamath
,
V.
,
Wygonski
,
J.
, and
Ekelid
,
M.
(
1995
). “
Speech recognition with primarily temporal cues
,”
Science
270
(
5234
),
303
304
.
31.
Whalen
,
D. H.
, and
Xu
,
Y.
(
1992
). “
Information for Mandarin tones in the amplitude contour and in brief segments
,”
Phonetica
49
(
1
),
25
47
.
32.
Wilson
,
B. S.
,
Finley
,
C. C.
,
Lawson
,
D. T.
,
Wolford
,
R. D.
,
Eddington
,
D. K.
, and
Rabinowitz
,
W. M.
(
1991
). “
Better speech recognition with cochlear implants
,”
Nature
352
(
6332
),
236
238
.
33.
Wu
,
J.-L.
,
Yang
,
H.-M.
,
Lin
,
Y.-H.
, and
Fu
,
Q.-J.
(
2007
). “
Effects of computer-assisted speech training on mandarin-speaking hearing-impaired children
,”
Audiol. Neurotol.
12
(
5
),
307
312
.
34.
Xu
,
L.
,
Tsai
,
Y.
, and
Pfingst
,
B. E.
(
2002
). “
Features of stimulation affecting tonal-speech perception: Implications for cochlear prostheses
,”
J. Acoust. Soc. Am.
112
(
1
),
247
258
.
35.
Xu
,
L.
, and
Zhou
,
N.
(
2011
). “
Tonal languages and cochlear implants
,” in
Auditory Prostheses: New Horizons
, edited by
F.-G.
Zeng
,
A. N.
Popper
, and
R. R.
Fay
(
Springer Science+Business Media, LLC
,
New York
), pp.
341
364
.
36.
Yang
,
J.
,
Zhang
,
Y.
,
Li
,
A.
, and
Xu
,
L.
(
2017
). “
On the duration of Mandarin tones
,” in
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, August
, pp.
1407
1411
.
37.
Zeng
,
F.-G.
(
2002
). “
Temporal pitch in electric hearing
,”
Hear. Res.
174
(
1–2
),
101
106
.
You do not currently have access to this content.