In this study, we report recent theoretical and experimental developments dealing with the axisymmetric flow surrounding non-spherically oscillating microbubbles. A wide variety of microstreaming patterns is revealed using a theoretical modeling providing exact analytical solutions of the second-order mean flows. The streaming pattern is highly dependent on the modal content of the bubble interface oscillation, including possibly spherical, translational, and nonspherical modes, as well as any combination of these modes. Experimental results on fluid flow induced by a single, non-spherically oscillating bubble in an unbounded fluid are presented and successfully compared to the theoretical predictions.

1.
A. A.
Doinikov
, “
Translational motion of a bubble undergoing shape oscillations
,”
J. Fluid Mech.
501
,
1
24
(
2004
).
2.
S. J.
Shaw
, “
Translation and oscillation of a bubble under axisymmetric deformation
,”
Phys. Fluids
18
(
7
),
072104
(
2006
).
3.
C.
Desjouy
,
P.
Labelle
,
B.
Gilles
,
J.-C.
Bera
, and
C.
Inserra
, “
Orbital trajectory of an acoustic bubble in a cylindrical resonator
,”
Phys. Rev. E
88
,
033006
(
2013
).
4.
R.
Mettin
and
A. A.
Doinikov
, “
Translational instability of a spherical bubble in a standing ultrasound wave
,”
Appl. Acoust
70
(
10
),
1330
1339
(
2009
).
5.
J. R.
Blake
,
U.
Parlitz
,
R.
Mettin
,
S.
Luther
,
I.
Akhatov
,
M.
Voss
, and
W.
Lauterborn
, “
Spatiotemporal dynamics of acoustic cavitation bubble clouds
,”
Philos. Trans. R. Soc. London Ser. A
357
(
1751
),
313
334
(
1999
).
6.
M. P.
Brenner
,
D.
Lohse
, and
T. F.
Dupont
, “
Bubble shape oscillations and the onset of sonoluminescence
,”
Phys. Rev. Lett.
75
,
954
957
(
1995
).
7.
S. J.
Shaw
, “
The stability of a bubble in a weakly viscous liquid subject to an acoustic traveling wave
,”
Phys. Fluids
21
(
2
),
022104
(
2009
).
8.
S.
Cleve
,
M.
Guédra
,
C.
Inserra
,
C.
Mauger
, and
P.
Blanc-Benon
, “
Surface modes with controlled axisymmetry triggered by bubble coalescence in a high-amplitude acoustic field
,”
Phys. Rev. E
98
,
033115
(
2018
).
9.
M.
Postema
,
P.
Marmottant
,
C. T.
Lancée
,
S.
Hilgenfeldt
, and
N.
de Jong
, “
Ultrasound-induced microbubble coalescence
,”
Ultrasound Med. Biol.
30
,
1337
1344
(
2004
).
10.
M.
Guédra
,
C.
Inserra
,
C.
Mauger
, and
B.
Gilles
, “
Experimental evidence of nonlinear mode coupling between spherical and nonspherical oscillations of microbubbles
,”
Phys. Rev. E
94
,
053115
(
2016
).
11.
V.
Garbin
,
D.
Cojoc
,
E.
Ferrari
,
E. D.
Fabrizio
,
M. L. J.
Overvelde
,
S. M.
van der Meer
,
N.
de Jong
,
D.
Lohse
, and
M.
Versluis
, “
Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging
,”
Appl. Phys. Lett.
90
(
11
),
114103
(
2007
).
12.
J.
Kolb
and
W. L.
Nyborg
, “
Small scale acoustic streaming in liquids
,”
J. Acoust. Soc. Am.
28
(
6
),
1237
1242
(
1956
).
13.
T.
Spelman
and
E.
Lauga
, “
Arbitrary axisymmetric steady streaming: Flow, force and propulsion
,”
J. Eng. Math.
105
,
31
65
(
2017
).
14.
F.
Reuter
and
R.
Mettin
, “
Mechanisms of single bubble cleaning
,”
Ultrasonics Sonochem.
29
,
550
562
(
2016
).
15.
I.
Lentacker
,
I.
De Cock
,
R.
Deckers
,
S. D.
Smedt
, and
C.
Moonen
, “
Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms
,”
Adv. Drug Del. Rev.
72
,
49
64
(
2014
).
16.
D.
Ahmed
,
A.
Ozcelik
,
N.
Bojanala
,
N.
Nama
,
A.
Upadhyay
,
Y.
Chen
,
W.
Hanna-Rose
, and
T.
Huang
, “
Rotational manipulation of single cells and organisms using acoustic waves
,”
Nat. Commun.
7
,
11085
(
2016
).
17.
W.
Nyborg
, “
Acoustic streaming
,”
Phys. Acoust.
2
,
265
331
(
1965
).
18.
M. S.
Longuet-Higgins
, “
Viscous streaming from an oscillating spherical bubble
,”
Proc. R. Soc. London Ser. A
454
(
1970
),
725
742
(
1998
).
19.
A.
Maksimov
, “
Viscous streaming from surface waves on the wall of acoustically-driven gas bubbles
,”
Euro. J. Mech. B/Fluids
26
(
1
),
28
42
(
2007
).
20.
A. A.
Doinikov
,
S.
Cleve
,
G.
Regnault
,
C.
Mauger
, and
C.
Inserra
, “
Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. I. Case of modes 0 and m
,”
Phys. Rev. E
100
,
033104
(
2019
).
21.
A. A.
Doinikov
,
S.
Cleve
,
G.
Regnault
,
C.
Mauger
, and
C.
Inserra
, “
Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. II. Case of modes 1 and m
,”
Phys. Rev. E
100
,
033105
(
2019
).
22.
C.
Inserra
,
G.
Regnault
,
S.
Cleve
,
C.
Mauger
, and
A. A.
Doinikov
, “
Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. III. Case of self-interacting modes
nn,”
Phys. Rev. E
101
,
013111
(
2020
).
23.
C.
Inserra
,
G.
Regnault
,
S.
Cleve
,
C.
Mauger
, and
A. A.
Doinikov
, “
Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. IV. Case of modes n and m
,”
Phys. Rev. E
102
,
043103
(
2020
).
24.
R. H.
Liu
,
J.
Yang
,
M. Z.
Pindera
,
M.
Athavale
, and
P.
Grodzinski
, “
Bubble-induced acoustic micromixing
,”
Lab Chip
2
,
151
157
(
2002
).
25.
P.
Tho
,
R.
Manasseh
, and
A.
Ooi
, “
Cavitation microstreaming patterns in single and multiple bubble systems
,”
J. Fluid Mech.
576
,
191
233
(
2007
).
26.
S.
Shklyaev
and
A. V.
Straube
, “
Linear oscillations of a compressible hemispherical bubble on a solid substrate
,”
Phys. Fluids
20
(
5
),
052102
(
2008
).
27.
M.
Fauconnier
,
J.-C.
Béra
, and
C.
Inserra
, “
Nonspherical modes nondegeneracy of a tethered bubble
,”
Phys. Rev. E
102
,
033108
(
2020
).
28.
S.
Cleve
,
M.
Guédra
,
C.
Mauger
,
C.
Inserra
, and
P.
Blanc-Benon
, “
Microstreaming induced by acoustically trapped, non-spherically oscillating microbubbles
,”
J. Fluid Mech.
875
,
597
621
(
2019
).
29.
T. J.
Asaki
and
P. L.
Marston
, “
Free decay of shape oscillations of bubbles acoustically trapped in water and sea water
,”
J. Fluid Mech.
300
,
149
167
(
1995
).
30.
B.
Saint-Michel
and
V.
Garbin
, “
Acoustic bubble dynamics in a yield-stress fluid
,”
Soft Matter
16
,
10405
10418
(
2020
).
31.
M.
Versluis
,
D. E.
Goertz
,
P.
Palanchon
,
I. L.
Heitman
,
S. M.
van der Meer
,
B.
Dollet
,
N.
de Jong
, and
D.
Lohse
, “
Microbubble shape oscillations excited through ultrasonic parametric driving
,”
Phys. Rev. E
82
,
026321
(
2010
).
32.
See supplementary material at https://www.scitation.org/doi/suppl/10.1121/10.0005821 for matlab code for streaming predictions and videos of the bubbles on mode 3, mode 4, and induced flows.
33.
R.
Ben Haj Slama
,
B.
Gilles
,
M. B.
Chiekh
, and
J.-C.
Béra
, “
PIV for the characterization of focused field induced acoustic streaming: Seeding particle choice evaluation
,”
Ultrasonics
76
,
217
226
(
2017
).
34.
J.-Y.
Tinevez
,
N.
Perry
,
J.
Schindelin
,
G. M.
Hoopes
,
G. D.
Reynolds
,
E.
Laplantine
,
S. Y.
Bednarek
,
S. L.
Shorte
, and
K. W.
Eliceiri
, “
Trackmate: An open and extensible platform for single-particle tracking
,”
Methods
115
,
80
90
(
2017
).
35.
A. M.
Soto
,
P.
Penas
,
G.
Lajoinie
,
D.
Lohse
, and
D.
van der Meer
, “
Ultrasound-enhanced mass transfer during single-bubble diffusive growth
,”
Phys. Rev. Fluids
5
,
063605
(
2020
).
36.
P.
Marmottant
and
S.
Hilgenfeldt
, “
Controlled vesicle deformation and lysis by single oscillating bubbles
,”
Nature
423
,
153
156
(
2003
).
37.
F.
Mekki-Berrada
,
T.
Combriat
,
P.
Thibault
, and
P.
Marmottant
, “
Interactions enhance the acoustic streaming around flattened microfluidic bubbles
,”
J. Fluid Mech.
797
,
851
873
(
2016
).
38.
A.
Marin
,
M.
Rossi
,
B.
Rallabandi
,
C.
Wang
,
S.
Hilgenfeldt
, and
C. J.
Kähler
, “
Three-dimensional phenomena in microbubble acoustic streaming
,”
Phys. Rev. Appl.
3
,
041001
(
2015
).
39.
F.
Prabowo
and
C.-D.
Ohl
, “
Surface oscillation and jetting from surface attached acoustic driven bubbles
,”
Ultrasonics Sonochem.
18
(
1
),
431
435
(
2011
).
40.
V.
Pereno
,
M.
Aron
,
O.
Vince
,
C.
Mannaris
,
A.
Seth
,
M.
de Saint Victor
,
G.
Lajoinie
,
M.
Versluis
,
C.
Coussios
,
D.
Carugo
, and
E.
Stride
, “
Layered acoustofluidic resonators for the simultaneous optical and acoustic characterisation of cavitation dynamics, microstreaming, and biological effects
,”
Biomicrofluidics
12
(
3
),
034109
(
2018
).
41.
A.
van Wamel
,
K.
Kooiman
,
M.
Harteveld
,
M.
Emmer
,
F. J.
ten Cate
,
M.
Versluis
, and
N.
de Jong
, “
Vibrating microbubbles poking individual cells: Drug transfer into cells via sonoporation
,”
J. Cont. Rel
112
(
2
),
149
155
(
2006
).
42.
S. A.
Elder
, “
Cavitation microstreaming
,”
J. Acoust. Soc. Am.
31
(
1
),
54
64
(
1959
).
43.
M.
Guédra
and
C.
Inserra
, “
Bubble shape oscillations of finite amplitude
,”
J. Fluid Mech.
857
,
681
703
(
2018
).
44.
S.
Roovers
,
T.
Segers
,
G.
Lajoinie
,
J.
Deprez
,
M.
Versluis
,
S. C.
De Smedt
, and
I.
Lentacker
, “
The role of ultrasound-driven microbubble dynamics in drug delivery: From microbubble fundamentals to clinical translation
,”
Langmuir
35
(
31
),
10173
10191
(
2019
).
45.
J.
Collis
,
R.
Manasseh
,
P.
Liovic
,
P.
Tho
,
A.
Ooi
,
K.
Petkovic-Duran
, and
Y.
Zhu
, “
Cavitation microstreaming and stress fields created by microbubbles
,”
Ultrasonics
50
(
2
),
273
279
(
2010
).
46.
B.
Dollet
,
S. M.
van der Meer
,
V.
Garbin
,
N.
de Jong
,
D.
Lohse
, and
M.
Verlsuis
, “
Nonspherical oscillations of ultrasound contrast agent microbubbles
,”
Ultrasound Med. Biol.
34
(
9
),
1465
1473
(
2008
).
47.
W.
Kim
,
T. H.
Kim
,
J.
Choi
, and
H. Y.
Kim
, “
Mechanism of particle removal by megasonic waves
,”
Appl. Phys. Lett.
94
,
081908
(
2009
).

Supplementary Material

You do not currently have access to this content.