Acoustic underwater propulsion systems based on bulk acoustic waves and surface acoustic waves have been studied. In this study, an acoustic propulsion system that consists of a 2.065-MHz thickness-vibration-mode lead-zirconate-titanate ultrasonic transducer is evaluated. A prototype swimmer is designed and fabricated. The admittance difference of the transducer in water and air is investigated. The vibration amplitude of the transducer is measured to evaluate transducer performance. The acoustic radiation force is calculated to describe acoustic propulsion. The zero-speed propulsion (ZSP) force and no-load speed (NLS) are measured in water. Swimmer movement starts at a NLS of 6.1 mm/s and a ZSP force of 0.2 mN for an input voltage and input power of 12.4 V peak to peak and 0.4 W, respectively. Although the average efficiency of the acoustic propulsion system is 69% in water, the overall movement efficiency of the swimmer is less than 1% because of fluid resistance and wire traction. Based on admittance, acoustic propulsion calculations, ZSP force, NLS measurements, and efficiency analysis, an evaluation method is proposed for optimizing swimmers with an acoustic underwater propulsion system. Small size, high power density, and simple structure of an acoustic propulsion system with an ultrasonic transducer make such systems suitable for applications such as pipeline inspection and repair.

1.
C. A.
Aubin
,
S.
Choudhury
,
R.
Jerch
,
L. A.
Archer
,
J. H.
Pikul
, and
R. F.
Shepherd
, “
Electrolytic vascular systems for energy-dense robots
,”
Nature
571
,
51
57
(
2019
).
2.
L.
Paull
,
S.
Saeedi
,
M.
Seto
, and
H.
Li
, “
AUV navigation and localization: A review
,”
IEEE J. Ocean. Eng.
39
,
131
149
(
2014
).
3.
L.
Wang
,
Y.
Hou
,
K.
Zhao
,
H.
Shen
,
Z.
Wang
,
C.
Zhao
, and
X.
Lu
, “
A novel piezoelectric inertial rotary motor for actuating micro underwater vehicles
,”
Sens. Actuators A Phys.
295
,
428
438
(
2019
).
4.
B. J.
Nelson
,
I. K.
Kaliakatsos
, and
J. J.
Abbott
, “
Microrobots for minimally invasive medicine
,”
Annu. Rev. Biomed. Eng.
12
,
55
85
(
2010
).
5.
L.
Zhang
,
J. J.
Abbott
,
L.
Dong
,
B. E.
Kratochvil
,
D. J.
Bell
, and
B. J.
Nelson
, “
Artificial bacterial flagella: Fabrication and magnetic control
,”
Appl. Phys. Lett.
94
,
064107
(
2009
).
6.
D.
Ahmed
,
C.
Dillinger
,
A.
Hong
, and
B. J.
Nelson
, “
Artificial acousto-magnetic soft microswimmers
,”
Int. J. Adv. Mater. Technol.
2
,
1700050
(
2017
).
7.
V. S.
Kalambur
,
B.
Han
,
B. E.
Hammer
,
T. W.
Shield
, and
J. C.
Bischof
, “
In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications
,”
Nanotechnology
16
,
1221
1233
(
2005
).
8.
F.
Schick
, “
Whole-body MRI at high field: Technical limits and clinical potential
,”
Eur. Radiol.
15
,
946
959
(
2005
).
9.
B.
Özkale
,
R.
Parreira
,
A.
Bekdemir
,
L.
Pancaldi
,
E.
Özelçi
,
C.
Amadio
,
M.
Kaynak
,
F.
Stellacci
,
D. J.
Mooney
, and
M. S.
Sakar
, “
Modular soft robotic microdevices for dexterous biomanipulation
,”
Lab Chip
19
,
778
788
(
2019
).
10.
M.
Guix
,
C. C.
Mayorga-Martinez
, and
A.
Merckoçi
, “
Nano/micromotors in (bio)chemical science application
,”
Chem. Rev.
114
,
6285
6322
(
2014
).
11.
Y.
Bourquin
and
J. M.
Cooper
, “
Swimming using surface acoustic waves
,”
PLoS One
8
,
e42686
(
2013
).
12.
D.
Kong
and
M. K.
Kurosawa
, “
A novel swimmer actuator via leaky surface acoustic wave
,”
Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS)
, Kobe, Japan (October 22–25,
2018
).
13.
D.
Kong
and
M. K.
Kurosawa
, “
A novel approach to swimmer actuation via leaky surface acoustic wave
,”
Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS)
, Seoul, South Korea (January 27–31,
2019
), pp.
994
997
.
14.
D.
Kong
,
K.
Nishio
, and
M. K.
Kurosawa
, “
Surface acoustic wave propulsion system with acoustic radiation force
,”
Sens. Actuators A Phys.
309
,
111943
(
2020
).
15.
N.
Zhang
,
Y.
Wen
, and
J.
Friend
, “
MHz-order surface acoustic wave thruster for underwater silent propulsion
,”
Micromachines
11
,
419
(
2020
).
16.
S.
Kajii
,
D.
Kong
,
K.
Nishio
, and
M. K.
Kurosawa
, “
Propulsion and speed measurement of high frequency underwater SAW actuators
,”
Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS)
, Las Vegas, NV (September 7–11,
2020
).
17.
H.
Yu
and
E. S.
Kim
, “
Ultrasonic underwater thruster
,”
IEEE International Conference on Micro Electro Mechanical Systems
, Maastricht, Netherlands (January 25–29,
2004
). pp.
486
489
.
18.
Z.
Wang
,
X.
Qiu
,
J.
Zhu
,
J.
Oiler
,
S.
Chen
,
J.
Shi
,
E. S.
Kim
, and
H.
Yu
, “
Directional acoustic underwater thruster
,”
Trans. Ultrason. Ferroelectr, Freq. Control
58
,
1114
1117
(
2011
).
19.
A.
Santos
, Jr.
,
Ultrasonic Waves
(
IntechOpen
,
London
,
2012
).
20.
E. M.
Allison
,
G. S.
Springer
, and
J. V.
Dam
, “
Ultrasonic propulsion
,”
J. Propul. Power
24
,
547
553
(
2008
).
21.
D.
Kong
,
K.
Nishio
, and
M. K.
Kurosawa
, “
Self-propelled swimmer via thickness-vibration-mode ultrasonic transducer
,”
Smart Mater. Struct.
29
(
1
),
02LT02
(
2020
).
22.
T.
Shigematsu
and
M. K.
Kurosawa
, “
Miniaturized SAW motor with 100 MHz drive frequency
,”
IEEJ. Trans. Sens. Micromachines
126
,
166
167
(
2006
).
23.
J. G.
Rodríguez-Madrid
,
G. F.
Iriarte
,
O. A.
Williams
, and
F.
Calle
, “
High precision pressure sensors based on SAW devices in the GHz range
,”
Sens. Actuators A Phys.
189
,
364
369
(
2013
).
24.
M. B.
Dentry
,
L. Y.
Yeo
, and
J. R.
Friend
, “
Frequency effects on the scale and behavior of acoustic streaming
,”
Phys. Rev. E
89
,
013203
(
2014
).
25.
E. M.
Purcell
, “
Life at low Reynolds number
,”
Am. J. Phys.
45
,
3
11
(
1977
).
26.
M.
Wautelet
, “
Scaling laws in the macro-, micro- and nanoworlds
,”
Eur. J. Phys.
22
,
601
611
(
2001
).
27.
M. K.
Tan
,
J. R.
Friend
, and
L. Y.
Yeo
, “
Microparticle collection and concentration via a miniature surface acoustic wave device
,”
Lab Chip
7
,
618
625
(
2007
).
28.
H.
Nomura
and
T.
Kamakura
, “
Acoustic radiation force acting on a small bubble in progressive waves
,”
AIP Conf. Proc.
524
,
363
366
(
2000
).
29.
N.
Zhang
and
J.
Friend
, “
Fabrication of nanoheight channels incorporating surface acoustic wave actuation via lithium niobate for acoustic nanofluidics
,”
J. Vis. Exp.
156
,
e60648
(
2020
).
30.
T.
Hasegawa
and
K.
Yoshioka
, “
Acoustic radiation force on a solid elastic sphere
,”
J. Acoust. Soc. Am.
46
,
1139
1143
(
1969
).
31.
J. A.
Rooney
and
W. L.
Nyborg
, “
Acoustic radiation pressure in a traveling plane wave
,”
Am. J. Phys.
40
,
1825
1830
(
1972
).
32.
T.
Kamakura
,
Nonlinear Acoustics 163
(Corona, 2014) [in Japanese].
33.
B. F.
Ley
,
S. G.
Lutz
, and
C. F.
Rehberg
, Linear Circuit Analysis (
McGraw-Hill
,
New York
,
1959
), pp.
278
279
.
34.
D.
Kong
and
M. K.
Kurosawa
, “
Excitation of Rayleigh wave with sapphire/LiNbO3 mechanical integration for surface acoustic wave motor
,”
Jpn. J. Appl. Phys.
57
(
5
),
07LE07
(
2018
).
35.
M.
Onoe
, “
Dynamic measurement of piezoelectric ceramics with high electromechanical coupling
,”
UCD
20
(
11
),
531
543
(
1968
).
36.
A. C.
Beck
, “
An experimental gas lens optical transmission line (correspondence)
,”
IEEE Trans. Microw. Theory Tech.
15
,
433
434
(
1967
).
37.
J.
Lighthill
, “
Acoustic streaming
,”
J. Sound Vib.
61
,
391
418
(
1978
).
You do not currently have access to this content.