Broadband sound absorption at low frequencies is always a challenge owing to the strong penetrability of acoustic waves. Combining detuned components, such as coupling curled Fabry–Pérot channels, has been proposed for broadband sound absorption. However, the components of the structure are generally arranged in parallel, so that it is difficult to assemble channels with gradient lengths into a compact and thin absorber. Tube networks, which can be seen as broadband and low-frequency sound absorbers, can circumvent this problem. However, the network absorber can only work at fixed frequencies once fabricated. Here, we propose a tunable low-frequency sound absorber consisting of honeycomb plates and detached chips and fabricate it by additive manufacturing. By replacing chips of the sound absorber, we experimentally validate different sound absorption spectrums. A low reduced frequency model and genetic algorithm are developed to design the chips according to targeted absorption spectrums. Moreover, we theoretically study the impact of radius of tube on sound absorption and extend the two-dimensional network to a three-dimensional structure. The remarkable efficiency and versatility of the tunable network sound absorber may pave the way for programmed absorbing material design.

1.
Allard
,
J.
, and
Atalla
,
N.
(
2009
).
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
, 2nd ed. (
Wiley
,
New York
).
2.
Biot
,
M. A.
(
1956
). “
Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
.
3.
Cai
,
X.
,
Guo
,
Q.
,
Hu
,
G.
, and
Yang
,
J.
(
2014
). “
Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators
,”
Appl. Phys. Lett.
105
,
121901
.
4.
Cai
,
X.
,
Yang
,
J.
,
Hu
,
G.
, and
Lu
,
T.
(
2018
). “
Sound absorption by acoustic microlattice with optimized pore configuration
,”
J. Acoust. Soc. Am.
144
,
138
143
.
5.
Cambonie
,
T.
, and
Gourdon
,
E.
(
2018
). “
Innovative origami-based solutions for enhanced quarter-wavelength resonators
,”
J. Sound Vib.
434
,
379
403
.
6.
Cavalieri
,
T.
,
Boulvert
,
J.
,
Romero-García
,
V.
,
Gabard
,
G.
,
Escouflaire
,
M.
,
Regnard
,
J.
, and
Groby
,
J.-P.
(
2021
). “
Rapid additive manufacturing of optimized anisotropic metaporous surfaces for broadband absorption
,”
J. Appl. Phys.
129
,
115102
.
7.
Chen
,
C.
,
Du
,
Z.
,
Hu
,
G.
, and
Yang
,
J.
(
2017
). “
A low-frequency sound absorbing material with subwavelength thickness
,”
Appl. Phys. Lett.
110
,
221903
.
8.
Chen
,
Y.
,
Zheng
,
M.
,
Liu
,
X.
,
Bi
,
Y.
,
Sun
,
Z.
,
Xiang
,
P.
,
Yang
,
J.
, and
Hu
,
G.
(
2017
). “
Broadband solid cloak for underwater acoustics
,”
Phys. Rev. B
95
,
180104
.
9.
Christensen
,
J.
, and
Javier García de Abajo
,
F.
(
2012
). “
Anisotropic metamaterials for full control of acoustic waves
,”
Phys. Rev. Lett.
108
,
124301
.
10.
Fang
,
N.
,
Xi
,
D.
,
Xu
,
J.
,
Ambati
,
M.
,
Srituravanich
,
W.
,
Sun
,
C.
, and
Zhang
,
X.
(
2006
). “
Ultrasonic metamaterials with negative modulus
,”
Nat. Mater.
5
,
452
456
.
11.
Goldberg
,
D. E.
, and
Holland
,
J. H.
(
1988
). “
Genetic algorithms and machine learning
,”
Mach. Learn.
3
,
95
99
.
12.
Huang
,
G. L.
, and
Sun
,
C. T.
(
2010
). “
Band gaps in a multiresonator acoustic metamaterial
,”
J. Vib. Acoust.
132
,
031003
.
13.
Huang
,
S.
,
Fang
,
X.
,
Wang
,
X.
,
Assouar
,
B.
,
Cheng
,
Q.
, and
Li
,
Y.
(
2018
). “
Acoustic perfect absorbers via spiral metasurfaces with embedded apertures
,”
Appl. Phys. Lett.
113
,
233501
.
14.
Huang
,
S.
,
Fang
,
X.
,
Wang
,
X.
,
Assouar
,
B.
,
Cheng
,
Q.
, and
Li
,
Y.
(
2019
). “
Acoustic perfect absorbers via Helmholtz resonators with embedded apertures
,”
J. Acoust. Soc. Am.
145
,
254
262
.
15.
Huang
,
Y.
,
Zhou
,
D.
,
Xie
,
Y.
,
Yang
,
J.
, and
Kong
,
J.
(
2014
). “
Tunable sound absorption of silicone rubber materials via mesoporous silica
,”
RSC Adv.
4
,
15171
15179
.
16.
ISO 10534-2
(
1998
). “
Acoustics—Determination of sound absorption coefficient and impedance in impedance tubes—Part 2: Transfer-function method
” (
International Organization for Standardization
,
Geneva, Switzerland
).
17.
Jiang
,
X.
,
Liang
,
B.
,
Li
,
R.
,
Zou
,
X.
,
Yin
,
L.
, and
Cheng
,
J.
(
2014
). “
Ultra-broadband absorption by acoustic metamaterials
,”
Appl. Phys. Lett.
105
,
243505
.
18.
Kaina
,
N.
,
Lemoult
,
F.
,
Fink
,
M.
, and
Lerosey
,
G.
(
2015
). “
Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials
,”
Nature
525
,
77
81
.
19.
Li
,
J.
,
Fok
,
L.
,
Yin
,
X.
,
Bartal
,
G.
, and
Zhang
,
X.
(
2009
). “
Experimental demonstration of an acoustic magnifying hyperlens
,”
Nat. Mater.
8
,
931
934
.
20.
Li
,
Y.
,
Jiang
,
X.
,
Liang
,
B.
,
Cheng
,
J.
, and
Zhang
,
L.
(
2015
). “
Metascreen-based acoustic passive phased array
,”
Phys. Rev. Appl.
4
,
024003
.
21.
Liang
,
Z.
, and
Li
,
J.
(
2012
). “
Extreme acoustic metamaterial by coiling up space
,”
Phys. Rev. Lett.
108
,
114301
.
22.
Liu
,
Z. Y.
,
Zhang
,
X. X.
,
Mao
,
Y. W.
,
Zhu
,
Y. Y.
,
Yang
,
Z. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
(
2000
). “
Locally resonant sonic materials
,”
Science
289
,
1734
1736
.
23.
Ma
,
G.
,
Yang
,
M.
,
Xiao
,
S.
,
Yang
,
Z.
, and
Sheng
,
P.
(
2014
). “
Acoustic metasurface with hybrid resonances
,”
Nat. Mater.
13
,
873
878
.
24.
Maa
,
D.
(
1975
). “
Theory and design of microperforated panel sound-absorbing constructions
,”
Sci. Sin.
18
,
55
71
.
25.
Maa
,
D.
(
1998
). “
Potential of microperforated panel absorber
,”
J. Acoust. Soc. Am.
104
,
2861
2866
.
26.
Mei
,
J.
,
Ma
,
G.
,
Yang
,
M.
,
Yang
,
Z.
,
Wen
,
W.
, and
Sheng
,
P.
(
2012
). “
Dark acoustic metamaterials as super absorbers for low-frequency sound
,”
Nat. Commun.
3
,
756
.
27.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
(
2018
). “
Additive manufacturing (3D printing): A review of materials, methods, applications and challenges
,”
Compos. Part B Eng.
143
,
172
196
.
28.
Popa
,
B.-I.
,
Zigoneanu
,
L.
, and
Cummer
,
S. A.
(
2011
). “
Experimental acoustic ground cloak in air
,”
Phys. Rev. Lett.
106
,
253901
.
29.
Ryoo
,
H.
, and
Jeon
,
W.
(
2018
). “
Dual-frequency sound-absorbing metasurface based on visco-thermal effects with frequency dependence
,”
J. Appl. Phys.
123
,
115110
.
30.
Shao
,
C.
,
Liu
,
C.
,
Ma
,
C.
,
Long
,
H.
,
Chen
,
K.
,
Cheng
,
Y.
, and
Liu
,
X.
(
2021
). “
Multiband asymmetric sound absorber enabled by ultrasparse Mie resonators
,”
J. Acoust. Soc. Am.
149
,
2072
2080
.
31.
Tijdeman
,
H.
(
1975
). “
On the propagation of sound waves in cylindrical tubes
,”
J. Sound Vib.
39
,
1
33
.
32.
Toyoda
,
M.
,
Sakagami
,
K.
,
Takahashi
,
D.
, and
Morimoto
,
M.
(
2011
). “
Effect of a honeycomb on the sound absorption characteristics of panel-type absorbers
,”
Appl. Acoust.
72
,
943
948
.
33.
van der Eerden
,
F.
(
2000
). “
Noise reduction with coupled prismatic tubes
,” Ph.D. thesis,
University of Twente
,
Enschede, Netherlands
.
34.
Wang
,
Y.
,
Zhao
,
H.
,
Yang
,
H.
,
Zhong
,
J.
,
Zhao
,
D.
,
Lu
,
Z.
, and
Wen
,
J.
(
2018
). “
A tunable sound-absorbing metamaterial based on coiled-up space
,”
J. Appl. Phys.
123
,
185109
.
35.
Wu
,
F.
,
Xiao
,
Y.
,
Yu
,
D.
,
Zhao
,
H.
,
Wang
,
Y.
, and
Wen
,
J.
(
2019
). “
Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels
,”
Appl. Phys. Lett.
114
,
151901
.
36.
Xie
,
Y.
,
Popa
,
B.-I.
,
Zigoneanu
,
L.
, and
Cummer
,
S. A.
(
2013
). “
Measurement of a broadband negative index with space-coiling acoustic metamaterials
,”
Phys. Rev. Lett.
110
,
175501
.
37.
Xie
,
Y.
,
Wang
,
W.
,
Chen
,
H.
,
Konneker
,
A.
,
Popa
,
B.-I.
, and
Cummer
,
S. A.
(
2014
). “
Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface
,”
Nat. Commun.
5
,
5553
.
38.
Yang
,
M.
,
Chen
,
S.
,
Fu
,
C.
, and
Sheng
,
P.
(
2017
). “
Optimal sound-absorbing structures
,”
Mater. Horiz.
4
,
673
680
.
39.
Zhang
,
Q.
,
Zhang
,
K.
, and
Hu
,
G.
(
2016
). “
Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique
,”
Sci. Rep.
6
,
22431
.
40.
Zhu
,
J.
,
Christensen
,
J.
,
Jung
,
J.
,
Martin-Moreno
,
L.
,
Yin
,
X.
,
Fok
,
L.
,
Zhang
,
X.
, and
Garcia-Vidal
,
F. J.
(
2011
). “
A holey-structured metamaterial for acoustic deep-subwavelength imaging
,”
Nat. Phys.
7
,
52
55
.
41.
Zwikker
,
C.
, and
Kosten
,
C. W.
(
1949
).
Sound Absorbing Materials
(
Elsevier
,
New York
).
You do not currently have access to this content.