Polymeric separators have been developed since 2010 to produce acoustophoretic separation of particles or cells in suspension with high efficiency. They rely on three-dimensional (3D) resonances of their whole structure actuated by ultrasounds. In this paper, a numerical 3D analysis is presented and validated as the only tool for optimization of these polymeric chips to perform efficient separation applications. In contrast to conventional acoustophoretic techniques based on the establishment of standing waves in the liquid phase of the channel (requiring rigid chip materials, such as silicon or glass), whole-structure resonances of the chip allow the use of materials that are acoustically soft and of low acoustic impedance, which is close to that of the liquid samples hosted. The resonance requirement is not restricted to the liquid phase in the polymeric chips, but it extends to the 3D whole structure, allowing any material. It provides significant advantages in the design and manufacture of our chips, allowing the use of low-cost materials and cheap manufacturing processes and even printing of devices. The extraordinary complexity of their multiple resonances requires theoretical approaches to optimize their acoustophoretic performance. Hence, the importance of 3D numerical analyses, which are capable of predicting the acoustic behavior of these chips, is to perform acoustophretica separation in suspensions.

1.
Barkholt Muller
,
P.
,
Barnkob
,
R.
,
Jensen
,
M. J. H.
, and
Bruus
,
H.
(
2012
). “
A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces
,”
Lab Chip
12
,
4617
4627
.
2.
Barnkob
,
R.
,
Augustsson
,
P.
,
Laurell
,
T.
, and
Bruus
,
H.
(
2010
). “
Measuring the local pressure amplitude in microchannel acoustophoresis
,”
Lab Chip
10
(
5
),
563
570
.
3.
Courtney
,
C.
,
Ong
,
C. K.
,
Drinkwater
,
B.
,
Wilcox
,
P.
,
Démoré
,
C.
,
Cochran
,
S.
,
Glynne-Jones
,
P.
, and
Hill
,
M.
(
2010
). “
Manipulation of microparticles using phase-controllable ultrasonic standing waves
,”
J. Acoust. Soc. Am.
128
,
EL195
EL199
.
4.
Doinikov
,
A.
(
1994a
). “
Acoustic radiation pressure on a compressible sphere in a viscous fluid
,”
J. Fluid Mech.
267
,
1
21
.
5.
Doinikov
,
A.
(
1994b
). “
Acoustic radiation pressure on a rigid sphere in a viscous fluid
,”
Proc. R. Soc. London, A
447
,
447
466
.
6.
Evander
,
M.
,
Nilsson
,
A.
,
Nilsson
,
J.
, and
Laurell
,
T.
(
2008
). “
Acoustophoresis in wet etched glass chips
,”
Anal. Chem.
80
(
13
),
5178
5185
.
7.
González
,
I.
,
Acosta
,
V.
,
Tijero
,
M.
,
Berganzo
,
J.
, and
Cabañas
,
A.
(
2012
). “
Influence of the substrate of multilayer systems on the acoustic field establishment inside their channels of treatment
,” in
Proc. USWNet 2012 Conference
, available at https://www.acoustofluidics.net/archive/materials/USWNet_2012_Lund_Materials.pdf (Last viewed 2/1/2021).
8.
González
,
I.
,
Earl
,
J.
,
Pinto
,
A.
,
Fernandez
,
L. J.
,
Sainz
,
B.
,
Alcalá
,
S.
,
Monge
,
R.
,
Acosta
,
V.
,
Castillejo
,
A.
,
Soto
,
J. L.
, and
Carrato
,
A.
(
2018
). “
A label free disposable device for rapid isolation of rare tumor cells from blood by ultrasounds
,”
Micromachines
9
(
3
),
129
.
9.
González
,
I.
,
Fernández
,
L. J.
,
Gómez Alvarez-Arenas
,
T.
,
Berganzo
,
J.
,
Soto
,
J. L.
, and
Carrato
,
A.
(
2010
). “
A polymeric chip for micromanipulation and particle sorting by ultrasounds based on a multilayer configuration
,”
Sens. Actuators B
144
(
1
),
310
317
.
10.
González
,
I.
,
Tijero
,
M.
,
Martin
,
A.
,
Acosta
,
V.
,
Berganzo
,
J.
,
Castillejo
,
A.
,
Bouali
,
M. M.
, and
Soto
,
J. L.
(
2015
). “
Optimizing polymer Lab-on-Chip platforms for ultrasonic manipulation: Influence of the substrate
,”
Micromachines
6
,
574
591
.
11.
Gor'kov
,
L. P.
(
1962
). “
On the forces acting on a small particle in an acoustic field in an ideal fluid
,”
Sov. Phys. Dokl.
6
,
773
775
.
12.
Haake
,
A.
, and
Dual
,
J.
(
2002
). “
Micro-manipulation of small particles by node position control of an ultrasonic standing wave
,”
Ultrasonics
40
,
317
322
.
13.
Harris
,
N.
,
Keating
,
A.
, and
Hill
,
M.
(
2010
). “
A lateral mode flow-through PMMA ultrasonic separator
,”
5th Asia-Pacific Conference on Transducers and Micro-Nano Technology (APCOT2010)
.
14.
Hawkes
,
J.
,
Barber
,
R. W.
,
Emerson
,
D. R.
, and
Coakley
,
W. T.
(
2004
). “
Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel
,”
Lab Chip
4
,
446
462
.
15.
Hill
,
M.
,
Townsend
,
R. J.
, and
Harris
,
N. R.
(
2008
). “
Modelling for the robust design of layered resonators for ultrasonic particle manipulation
,”
Ultrasonics
48
(
1
),
521
528
.
16.
Hulström
,
J.
,
Manneberg
,
O.
,
Dorf
,
K.
,
Hertz
,
H. M.
,
Brismar
,
H.
, and
Wiklund
,
M.
(
2007
). “
Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip
,”
Ultrasound Med. Biol.
33
(1),
145
151
.
17.
Kapishnikov
,
S.
,
Kantsler
,
V.
, and
Steingberg
,
V.
(
2006
). “
Continuous particle size separation and size sorting using ultrasound in a microchannel, theory and experiments
,”
J. Stat. Mech.
2006
,
P01012
.
18.
Laurell
,
T.
,
Petterson
,
F.
, and
Nilson
,
A.
(
2007
). “
Chip integrated strategies for acoustic separation and manipulation of cells and particles
,”
Chem. Soc. Rev.
36
,
492
506
.
19.
Moiseyenko
,
R. P.
, and
Bruus
,
H.
(
2019
). “
Whole-system ultrasound resonances as the basis for acoustophoresis in all-polymer microfluidic devices
,”
Phys. Rev. Appl.
11
(
1
),
014014
.
20.
Peterson
,
F.
,
Nilsson
,
A.
,
Holm
,
C.
,
Jönsson
,
H.
, and
Laurell
,
T.
(
2005
). “
Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces
,”
Lab Chip
5
,
20
22
.
21.
Silva
,
G. T.
,
Lopes
,
J. H.
,
Leão-Neto
,
J. P.
,
Nichols
,
M. K.
, and
Drinkwater
,
B. W.
(
2019
). “
Particle patterning by ultrasonic standing waves in a rectangular cavity
,”
Phys. Rev. Appl.
11
,
054044
.
22.
Vargas-Jiménez,
A.
,
Camacho
,
M.
,
Muñoz
,
J. D.
, and
González
,
I.
(
2021
). “
A 3D analysis of the acoustic radiation force in microfluidic channel with rectangular geometry
,”
Wave Motion
101
,
102701
1544
.
23.
Wiklund
,
M.
,
Gunther
,
C.
,
Lemor
,
R.
,
Jager
,
M.
,
Fuhr
,
G.
, and
Hertz
,
H. M.
(
2006
). “
Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip
,”
Lab Chip
6
,
1537
1544
.
You do not currently have access to this content.