This study investigates source-related noise characteristics of the Falcon 9, a modern launch vehicle with a high operational tempo. Empirical prediction of the noise characteristics of launched rockets has long been a topic of study; however, there are relatively few comparisons with high-fidelity, far-field data, and historical inconsistencies persist. Various quantities are considered: overall directivity, overall sound power, maximum overall sound pressure level (OASPL), and peak frequency. The noise directivity of the Falcon 9 vehicle is shown to be between two disparate ranges given in the historical literature, but the observed peak directivity angle is well represented using convective Mach number concepts. A comparison between mechanical and acoustic power yields a radiation efficiency is consistent with the literature. Two independent methods of predicting maximum OASPL produce results accurate within 2 dB, even at distances of several kilometers. Various scaling parameters are calculated for observed spectral peak frequency and connect these measurements with prior observations. Finally, the impact of terrain shielding on levels and spectra is assessed. These determined source characteristics of the Falcon 9 vehicle provide a connection to prior launch vehicle acoustics studies, which helps identify useful models and methods for understanding rocket noise.

1.
J. N.
Cole
,
H. E.
Von Gierke
,
D. T.
Kyrazis
,
K. M.
Eldred
, and
A. J.
Humphrey
, “
Noise radiation from fourteen types of rockets in the 1,000 to 130,000 pounds thrust range
,”
WADC Technical Report No. 57
, 354 (
1957
).
2.
W. H.
Mayes
,
W. E.
Lanford
, and
H. H.
Hubbard
, “
Near-field and far-field noise surveys of solid-fuel rocket engines for a range of nozzle exit pressures
,”
NASA Report No. TN D-21
(
Langley Research Center, National Aeronautics and Space Administration
,
Hampton, VA
,
1959
).
3.
W. H.
Maynes
and
P. M.
Edge
, “
Noise measurements during captive and launch firings of a large rocket-powered vehicle
,”
NASA TN D-1502
(
Langley Research Center, National Aeronautics and Space Administration
,
Hampton, VA
,
1962
).
4.
S. H.
Guest
, “
Acoustic efficiency trends for high thrust boosters
,” NASA TN D-1999 (
George C. Marshall Space Flight Center, National Aeronautics and Space Administration
,
Huntsville, AL
,
1964
).
5.
R. N.
Tedrick
, “
Acoustical measurements of static tests of clustered and single-nozzled rocket engines
,”
J. Acoust. Soc. Am.
36
,
2027
2032
(
1964
).
6.
R. C.
Potter
and
M. J.
Crocker
, “
Acoustic prediction methods for rocket engines, including the effects of clustered engines and deflected exhaust flow
,” NASA-CR-566 (
George C. Marshall Space Flight Center, National Aeronautics and Space Administration
,
Huntsville, AL
,
1966
).
7.
K. M.
Eldred
, “
Acoustic loads generated by the propulsion system
,” NASA SP-8072 (
National Aeronautics and Space Administration
,
Washington, DC
,
1971
).
8.
K. J.
Plotkin
,
L. C.
Sutherland
, and, and
B. T.
Vu
, “
Liftoff acoustics predictions for the Ares I launch pad
,” in
Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference)
,
Miami, FL
(
May 11–13
,
2009
), AIAA 2009-3163.
9.
S. A.
Kumar
and
N.
Karthikeyan
, “
Prediction of launch vehicle noise during lift-off using a modified Eldred's method
,” in
Proceedings of the 14th Asian Congress of Fluid Mechanics
,
Hanoi and Halong, Vietnam
(
October 15–19
,
2013
).
10.
D. D.
Counter
and
J.
Houston
, “
Verification of Ares I Liftoff acoustic environments via the Ares I scale model acoustic test
,” in
Proceedings of the 27th Aerospace Testing Seminar
,
Los Angeles, CA
(
October 16–18
,
2012
), p.
M12-1989
.
11.
T.
Ishii
,
S.
Tsutsumi
,
K.
Ui
,
S.
Tokudome
,
Y.
Ishii
,
K.
Wada
, and
S.
Nakamura
, “
Acoustic measurement of 1:42 scale booster and launch pad
,”
Proc. Mtgs. Acoust.
18
,
040009
(
2012
).
12.
P.
Malbéqui
,
R.
Davy
, and
C.
Bresson
, “
Experimental characterization of the acoustics of the future Ariane 6 launch pad
,” in
Proceedings of the 7th European Conference for Aeroacoustics and Space Science (EUCASS)
,
Milan, Italy
(
July 3–6
,
2017
).
13.
S.
Tsutsumi
,
T.
Ishii
,
K.
Ui
,
K.
Wada
, and
S.
Tokudome
, “
Study on acoustic prediction and reduction of Epsilon launch vehicle at liftoff
,”
J. Spacecr. Rockets
52
,
350
361
(
2015
).
14.
J. S.
West
,
L. L.
Strutzenberg
,
G. C.
Putnam
,
G. C.
Liever
, and, and
B. R.
Williams
, “
Development of modeling capabilities for launch pad acoustics and ignition transient environment prediction
,” in
Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference)
,
Colorado Springs, CO
(
June 4–6
,
2012
), AIAA 2012-2094.
15.
S. A.
McInerny
, “
Launch vehicle acoustics. 1—Overall levels and spectral characteristics
,”
J. Aircr.
33
,
511
517
(
1996
).
16.
S. A.
McInerny
, “
Launch vehicle acoustics. 2—Statistics of the time domain data
,”
J. Aircr.
33
,
518
523
(
1996
).
17.
S. A.
McInerny
,
J. K.
Wickiser
, and
R. H.
Mellen
, “
Rocket Noise Propagation
,”
ASME Noise Control Acoust.
24
,
37
50
(
1997
).
18.
S. A.
McInerny
,
G.
Lu
, and
S.
Ölçmen
, “
Rocket and Jet Mixing Noise, Background and Prediction Procedures
,” National Center for Physical Acoustics Report No. UM 03-08-013 (
National Center for Physical Acoustics
,
University, MS
,
2004
).
19.
S. A.
McInerny
, “
Characteristics and predictions of far-field rocket noise
,”
Noise Control Eng. J.
38
,
5
16
(
1992
).
20.
S. A.
McInerny
and
S. M.
Ölçmen
, “
High-intensity rocket noise: Nonlinear propagation, atmospheric absorption, and characterization
,”
J. Acoust. Soc. Am.
117
,
578
591
(
2005
).
21.
S. A.
McInerny
,
J. K.
Francine
,
B. S.
Stewart
, and
P. H.
Thorson
, “
The influence of low-frequency instrumentation response on rocket noise metrics
,”
J. Acoust. Soc. Am.
102
,
2780
2785
(
1997
).
22.
L. C.
Sutherland
, “
Progress and problems in rocket noise prediction for ground facilities
,” in
Proceedings of the 15th AIAA Aeroacoustics Conference
,
Miami, FL
(
May 11–13
,
1993
), AIAA-93-4383.
23.
M. M.
James
,
A. R.
Salton
,
K. L.
Gee
,
T. B.
Nielsen
,
S. A.
McInerny
, and
R. J.
Kenny
, “
Modification of directivity curves for a rocket noise model
,”
Proc. Mtgs. Acoust.
18
,
040008
(
2014
).
24.
C. K. W.
Tam
, “
Supersonic Jet Noise
,”
Ann. Rev. Fluid Mech.
27
,
17
43
(
1995
).
25.
C. K. W.
Tam
, “
Mach wave radiation from high-speed jets
,” in
Proceedings of the 47th AIAA Aerospace Sciences Meeting
,
Orlando, FL
(
January 5–8
,
2009
), AIAA 2009-13.
26.
J. M.
Seiner
,
M. K.
Ponton
,
B. J.
Jansen
, and
N. T.
Lagen
, “
The Effects of Temperature on Supersonic Jet Noise Emission
,” in
DLGR/AIAA 14th Aeroacoustics Conference
,
Vancouver, BC
(
May 5–7
,
1992
), DLGR/AIAA 92-02-046.
27.
R. J.
Kenny
,
C.
Hobbs
,
K.
Plotkin
, and
D.
Pilkey
, “
Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics
,” in
Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference)
,
Miami, FL
(
May 11–13
,
2009
), AIAA 2009-3161.
28.
J.
Haynes
and
R. J.
Kenny
, “
Modifications to the NASA SP-8072 Distributed Source Method II for Ares I Lift-off Environment Predictions
,” in
Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference)
,
Miami, FL
(
May 11–13
,
2009
), AIAA 2009-3160.
29.
K. L.
Gee
,
E. B.
Whiting
,
T. B.
Nielsen
,
M. M.
James
, and
A. R.
Salton
, “
Development of a near-field intensity measurement capability for static rocket firings
,”
Trans. JSASS Aerosp. Tech. Jpn.
14
,
Po_2_9
Po_2_15
(
2016
).
30.
B.
Greska
,
A.
Krothapalli
,
W. C.
Horne
, and
N.
Burnside
, “
A Near-Field Study of High Temperature Supersonic Jets
,” in
Proceedings of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference)
,
Vancouver, BC
(
May 5–7
,
2008
), AIAA 2008-3026.
31.
Space Exploration Technologies Corp.
, “
Falcon user's guide
,” Space Exploration Technologies Corp. (
SpaceX
,
Hawthorne, CA
,
2019
).
32.
NASA Glenn Research Center
, “Chemical equilibrium with applications CEARUN,” https://cearun.grc.nasa.gov/ (Last date accessed: 17 Jun 2021).
33.
L. T.
Mathews
,
K. L.
Gee
,
G. W.
Hart
,
R. D.
Rasband
,
D. J.
Novakovich
,
F. I.
Irrarazabal
,
A. B.
Vaughn
, and
P.
Nelson
, “
Comparative analysis of noise from three Falcon 9 launches
,”
J. Acoust. Soc. Korea
39
,
322
330
(
2020
).s
34.
M.
Muhlestein
,
K. L.
Gee
,
T. B.
Neilsen
, and
D. C.
Thomas
, “
Prediction of nonlinear propagation of noise from a solid rocket motor
,”
Proc. Mtgs. Acoust.
18
,
040006
(
2013
).
35.
B. O.
Reichman
,
B.
Harker
,
T.
Stout
,
E.
Whiting
,
K. L.
Gee
, and
T. B.
Neilsen
, “
Acoustical measurements during a static firing of the space launch system solid rocket motor
,”
Proc. Mtgs. Acoust.
25
,
045006
(
2015
).
36.
R. S.
Ryan
,
J. H.
Jones
,
S. H.
Guest
,
H. G.
Struck
,
M. H.
Rheinfurth
, and
V. S.
Verderaime
, “
Propulsion System Ignition Overpressure for Space Shuttle
,” NASA TM-82458 (
George C. Marshall Space Flight Center, National Aeronautics and Space Administration
,
Huntsville, AL
,
1981
).
37.
K.
Fukuda
,
S.
Tsutsumi
,
K.
Fujii
,
K.
Ui
,
T.
Ishii
,
H.
Oinuma
,
J.
Kazawa
, and, and
K.
Minesugi
, “
Acoustic measurement and prediction of solid rockets in static firing tests
,” in
Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference)
,
Miami, FL
(
May 11–13
,
2009
), AIAA 2009-3368.
38.
H.
Oertel
, “
Measured velocity fluctuations inside the mixing layer of a supersonic jet
,” in
Recent Contributions to Fluid Mechanics
(
Springer
,
Berlin-Heidelberg
,
1982
).
39.
H. S.
Ribner
, “
The generation of noise by turbulent jets
,”
Adv. Appl. Mech.
8
,
103
182
(
1964
).
40.
R. S.
Matoza
,
D.
Fee
,
T. B.
Nielsen
,
K. L.
Gee
, and
D. E.
Ogden
, “
Aeroacoustics of volcanic jets: Acoustic power estimation and jet velocity dependence
,”
J. Geophys. Res.: Solid Earth
118
,
6269
6284
, (
2013
).
41.
E. J.
Richards
and
B. L.
Clarkson
, “
Jet and rocket noise
,” in
Noise and Acoustic Fatigue in Aeronautics
(
Wiley
,
New York
,
1968
), Chap. 7, pp.
150
168
.
42.
U.
Michel
and
A.
Michalke
, “
Prediction of flyover jet noise spectra from static tests
,” NASA-TM-83219 (
National Aeronautics and Space Administration
,
Washington, DC
,
1981
).
43.
R. H.
Schlinker
,
S. A.
Liljenberg
,
D. R.
Polak
,
K. A.
Post
,
C. T.
Chipman
, and
A. M.
Stern
, “
Supersonic jet noise source characteristics & propagation: Engine and model scale
,” in
Proceedings of the 13th AIAA/CEAS Conference (28th AIAA Aeroacoustics Conference)
,
Rome, Italy
(
May 21–23
,
2009
), AIAA 2007-3623.
44.
C.
Bogey
,
S.
Barré
,
V.
Fleury
,
C.
Bailly
, and
D.
Juvé
, “
Experimental study of the spectral properties of near-field and far-field jet noise
,”
Int. J. Aeroacoust.
6
,
73
92
(
2007
).
45.
K. M.
Eldred
,
W. M.
Roberts
, and
R.
White
, “
Structural vibrations in space vehicles
,” WADD Technical Report (
Wright Air Development Division
,
Wright-Patterson Air Force Base, OH
,
1961
), pp.
61
62
.
46.
Z.
Maekawa
, “
Noise reduction by screens
,”
Appl. Acoust.
1
,
157
173
(
1968
).
47.
U. J.
Kurze
and
G. S.
Anderson
, “
Sound attenuation by barriers
,”
Appl. Acoust.
4
,
35
53
(
1971
).
You do not currently have access to this content.