Polyethylene (PE) pipes are widely used in gas distribution. Their joints are prone to various flaws and are the most problematic part of the pipeline, so the infrastructure industry requires an effective inspection technique. Butt-fusion (BF) is the most common method of joining PE pipes. In this research, we investigated the applicability of machine learning (ML) to automate the ultrasonic inspection of PE pipe BF joints. Flawless and defective joints were fabricated. A-scan signals were collected from each group of samples using a customized chord transducer, with the aim of developing and assessing the viability of ML approaches to the problem of joint classification. We compared several ML approaches to the problem and found that convolutional neural networks were most performant, classifying signals with an F1 score of 0.874 in a four-class problem (identifying defect presence and type) and of 0.912 in binary classification (defect presence/absence only). Our results show that an ultrasonic chord-type transducer approach can effectively resolve flawless samples versus those with coarse contaminants or cold fusions and that an ML approach can be used to effectively assess these ultrasonic signals. Our findings can be used to develop a portable, efficient, user-friendly, and inexpensive device for in-field joint inspections.

1.
M.
Troughton
,
M.
Spicer
, and
F.
Hagglund
, “
Development of ultrasonic phased array inspection of polyethylene pipe joints
,” in
Proceedings of the ASME 2012 Pressure Vessels and Piping Conference
, Toronto, Canada (July 15–19,
2012
), pp.
285
293
.
2.
M. S.
Prowant
,
K. M.
Denslow
,
T. L.
Moran
,
R. E.
Jacob
,
T. S.
Hartman
,
S. L.
Crawford
,
R.
Mathews
,
K. J.
Neill
, and
A. D.
Cinson
, “
Evaluation of ultrasonic phased-array for detection of planar flaws in high-density polyethylene (HDPE) butt-fusion joints
,” in
Proceedings of the ASME 2016 Pressure Vessels and Piping Conference
, Vancouver, Canada (July 17–21,
2016
).
3.
W. C.
Guo
,
J. F.
Shi
, and
D. S.
Hou
, “
Research on phased array ultrasonic technique for testing butt fusion joint in polyethylene pipe
,” in
Proceedings of the 2016 IEEE Far East NDT New Technology and Application Forum (FENDT)
, Nanchang, China (June 22–24,
2016
).
4.
S. L.
Crawford
,
S. R.
Doctor
,
A. D.
Cinson
,
S. E.
Cumblidge
, and
M. T.
Anderson
, “
Preliminary assessment of NDE methods on inspection of HDPE butt fusion piping joints for lack of fusion
,” in
Proceedings of the ASME 2009 Pressure Vessels and Piping Conference
, Prague, Czech Republic (July 26–30,
2009
), Vol.
5
, pp.
219
224
.
5.
J. S.
Egerton
,
M. J.
Lowe
,
H. V.
Halai
, and
P.
Huthwaite
, “
Improved FE simulation of ultrasound in plastics
,” in
AIP Conf. Proc.
1706
(
1
),
120001
(
2016
).
6.
R. K.
Krishnaswamy
and
M. J.
Lamborn
, “
The influence of process history on the ductile failure of polyethylene pipes subject to continuous hydrostatic pressure
,”
Adv. Polym. Technol.
24
(
3
),
226
232
(
2005
).
7.
J.
Zheng
,
Y.
Zhang
,
D.
Hou
,
Y.
Qin
,
W.
Guo
,
C.
Zhang
, and
J.
Shi
, “
A review of nondestructive examination technology for polyethylene pipe in nuclear power plant
,”
Front. Mech. Eng.
13
(
4
),
535
545
(
2018
).
8.
A. J.
Bahr
, “
Experimental techniques in microwave NDE
,” in
Review of Progress in Quantitative Nondestructive Evaluation
(
Springer
,
Boston, MA
,
1995
), pp.
593
600
.
9.
R. J.
Stakenborghs
, “
Innovative technique for inspection of polyethylene piping base material and welds and non-metallic pipe repair
,” in
Proceedings of the ASME 2016 Pressure Vessels and Piping Conference
, Vancouver, Canada (July 23–27,
2006
), pp.
245
255
.
10.
R. J.
Stakenborghs
, “
Validation of a microwave based inspection system for HDPE butt fusions
,” in
Proceedings of the ASME 2014 Pressure Vessels and Piping Conference
, Anaheim, CA (July 20–24,
2014
).
11.
R.
Kafieh
,
T.
Lotfi
, and
R.
Amirfattahi
, “
Automatic detection of defects on polyethylene pipe welding using thermal infrared imaging
,”
Infrared Phys. Technol.
54
(
4
),
317
325
(
2011
).
12.
I. J.
Munns
and
G. A.
Georgiou
, “
Ultrasonic and radiographic NDT of butt fusion welds in polyethylene pipe
,” NDTnet 1(04) (
1996
), https://www.ndt.net/article/twi/twi_1.htm#comp (Last viewed March 1996).
13.
M. H.
Taghipour
, “
Study and evaluation of advanced TOFD method for inspection of polyethylene pipes but welding
,”
J. Phys. Sci. Appl.
5
(
5
),
349
355
(
2015
).
14.
W.
Li
,
Z.
Zhou
, and
Y.
Li
, “
Inspection of butt welds for complex surface parts using ultrasonic phased array
,”
Ultrasonics
96
,
75
82
(
2019
).
15.
Y.
Qin
,
J.
Shi
,
J.
Zheng
,
D.
Hou
, and
W.
Guo
, “
An improved phased array ultrasonic testing technique for thick-wall polyethylene pipe used in nuclear power plant
,”
J. Pressure Vessel Technol.
141
(
4
),
041403-1:9
(
2019
).
16.
F.
Hagglund
,
M.
Spicer
, and
M.
Troughton
, “
Development of phased array ultrasonic inspection techniques for testing welded joints in plastic (PE) pipes
,” in
18th World Conference on Nondestructive Testing
, Durban, South Africa (April 16–20,
2012
), pp.
2782
2791
.
17.
S.
Marsland
,
Machine Learning: An Algorithmic Perspective
, 2nd ed. (
Taylor and Francis
,
Boca Raton, FL
,
2015
).
18.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
MIT
,
Cambridge, MA
,
2016
).
19.
J. B.
Harley
and
D.
Sparkman
, “
Machine learning and NDE: Past, present, and future
,”
AIP Conf. Proc.
2102
(
1
),
090001
(
2019
).
20.
W.
Hou
,
D.
Zhang
,
Y.
Wei
,
J.
Guo
, and
X.
Zhang
, “
Review on computer aided weld defect detection from radiography images
,”
Appl. Sci.
10
,
1878
(
2020
).
21.
S.
Mei
,
Y.
Wang
, and
G.
Wen
, “
Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model
,”
Sensor
18
,
1064
(
2018
).
22.
B.
Jin
,
Y.
Tan
,
A.
Nettekoven
,
Y.
Chen
,
U.
Topcu
,
Y.
Yue
, and
A. S.
Vincentelli
, “
An encoder-decoder based approach for anomaly detection with application in additive manufacturing
,” in
Proceedings of the 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA)
, Boca Raton, FL (December 16–19,
2019
), pp.
1008
1015
.
23.
M.
Alavijeh
,
R.
Scott
,
F.
Seviaryn
, and
R. Gr.
Maev
, “
NDE 4.0 compatible ultrasound inspection of butt-fused joints of medium density polyethylene gas pipes, using chord-type transducers supported by customized deep learning models
,”
Res. Nondestr. Eval.
31
(
5/6
),
290
305
(
2020
).
24.
M.
Marino
,
K.
Virupakshappa
, and
E.
Oruklu
, “
A recurrent neural network classifier for ultrasonic NDE applications
,” in
Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS)
, Kobe, Japan (October 22–25,
2018
).
25.
I.
Virkkunen
,
T.
Koskinen
,
O.
Jessen-Juhler
, and
J.
Rinta-Aho
, “
Augmented ultrasonic data for machine learning
,” arXiv:1903.11399 (
2019
).
26.
T.
He
,
Y.
Liu
,
Y.
Yu
,
Q.
Zhao
, and
Z.
Hu
, “
Application of deep convolutional neural network on feature extraction and detection of wood defects
,”
Measurement
152
,
107357
(
2020
).
27.
J.
Ren
,
R.
Ren
,
M.
Green
, and
X.
Huang
, “
Defect detection from x-ray images using a three-stage deep learning algorithm
,” in
Proceedings of the 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE)
, Edmonton, Canada (May 5–8,
2019
).
28.
S.
Sambath
,
P.
Nagaraj
, and
N.
Selvakumar
, “
Automatic defect classification in ultrasonic NDT using artificial intelligence
,”
J. Nondestruct. Eval.
30
,
20
28
(
2011
).
29.
W.
Du
,
H.
Shen
,
J.
Fu
,
G.
Zhang
,
X.
Shi
, and
Q.
He
, “
Automated detection of defects with low semantic information in X-ray images based on deep learning
,”
J. Intell. Manuf.
32
,
141
156
(
2020
).
30.
W.
Dai
,
A.
Mujeeb
,
M.
Erdt
, and
A.
Sourin
, “
Soldering defect detection in automatic optical inspection
,”
Adv. Eng. Inf.
43
,
101004
(
2020
).
31.
R.
Maev
,
A.
Chertov
,
R.
Scott
,
D.
Stocco
,
A.
Ouellette
,
A.
Denisov
, and
Y.
Oberdoerfer
, “
NDE in the automotive sector
,” in
Handbook of Nondestructive Evaluation 4.0
, edited by
N.
Meyendorf
,
N.
Ida
,
R.
Singh
, and
J.
Vrana
(
Springer
,
New York
,
2020
).
32.
Y.
LeCun
,
L.
Bottou
,
Y.
Bengio
, and
P.
Haffner
, “
Gradient-based learning applied to document recognition
,”
Proc. IEEE
86
(
11
),
2278
2324
(
1998
).
33.
J.
Schmidhuber
, “
Learning complex, extended sequences using the principle of history compression
,”
Neural Comput.
4
(
2
),
234
242
(
1992
).
34.
M.
Haile
,
C.
Hsu
,
N.
Bradley
, and
J.
Chen
, “
Recurrent neural networks for identification of acoustic wave reflections
,” in
Proceedings of the 9th European Workshop on Structural Health Monitoring (EWSHM 2018)
, Manchester, UK (July 10–13,
2018
).
35.
B.
Oh
,
H.
Choi
,
H.
Song
,
J.
Kim
,
C.
Park
, and
Y.
Kim
, “
Detection of defect inside duct using recurrent neural networks
,”
Sens. Mater.
32
,
171
182
(
2020
).
36.
C.
Hu
,
Y.
Duan
,
S.
Liu
,
Y.
Yan
,
N.
Tao
,
A.
Osman
,
C.
Ibarra-Castanedo
,
S.
Sfarra
,
D.
Chen
, and
C.
Zhang
, “
LSTM-RNN-based defect classification in honeycomb structures using infrared thermography
,”
Infrared Phys. Technol.
102
,
103032
(
2019
).
37.
J. S.
Egerton
,
M. J. S.
Lowe
,
P.
Huthwaite
, and
H. V.
Halai
, “
Ultrasonic attenuation and phase velocity of high-density polyethylene pipe material
,”
J. Acoust. Soc. Am.
141
(
3
),
1535
1545
(
2017
).
38.
W.
Guo
,
H.
Xu
,
Z.
Liu
, and
J.
Shi
, “
Ultrasonic technique for testing cold welding of butt-fusion joints in polyethylene pipe
,” in
Proceedings of the ASME 2013 Pressure Vessels and Piping Conference
, Paris, France (July 14–18,
2013
).
39.
G.
Giller
,
L.
Mogilner
, and
V.
Khomenko
, “
Technologies and hardware of ultrasonic testing of welded joints of steel and polyethylene pipelines
,” in
Proceedings of the 15th World Conference on Non-destructive Testing
, Rome, Italy (October 15–21,
2000
).
40.
A. V.
Zakharov
, “
Advantages of using ultrasonic chord-type probes in an elastic wear plate without a case for inspection of tube articles' welding
,”
Russ. J. Nondestr. Test.
42
,
71
73
(
2006
).
41.
V. M.
Ushakov
,
V. V.
Mikhalev
, and
D. M.
Davydov
, “
Sensitivity of a flaw detector during ultrasonic testing by chord-type transducers
,”
Russ. J. Nondestr. Test.
44
,
762
765
(
2008
).
42.
R.
Stakenborghs
, “
New method to detect cold fusion joints in high density polyethylene pipe
,” in
Proceedings of the Annual Technical Conference (ANTEC)
, Orlando, FL (April 2–4,
2012
), Vol.
3
, pp.
1909
1913
.
43.
S. L.
Crawford
,
S. R.
Doctor
,
A. D.
Cinson
,
M. W.
Watts
,
T. L.
Moran
, and
M. T.
Anderson
, “
Assessment of NDE methods to detect lack of fusion in HDPE butt fusion joints
,” in
Proceedings of the ASME 2011 Pressure Vessels and Piping Conference
, Baltimore, MD (July 17–21,
2011
), pp.
343
349
.
44.
A.
Graves
,
S.
Fernández
, and
J.
Schmidhuber
, “
Bidirectional LSTM networks for improved phenome classification and recognition
,” in
Proceedings of the International Conference on Artificial Neural Networks
, Warsaw, Poland (September 11–15,
2005
), pp.
799
804
.
45.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. J.
van der Walt
,
M.
Brett
,
J.
Wilson
,
K. J.
Millman
,
N.
Mayorov
,
A. R. J.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C. J.
Carey
,
İ.
Polat
,
Y.
Feng
,
E. W.
Moore
,
J.
VanderPlas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E. A.
Quintero
,
C. R.
Harris
,
A. M.
Archibald
,
A. H.
Ribeiro
,
F.
Pedregosa
,
P.
van Mulbregt
, and
SciPy 1.0 Contributors
, “
SciPy 1.0: Fundamental algorithms for scientific computing in Python
,”
Nat. Methods
17
(
3
),
261
272
(
2020
).
46.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
47.
F.
Chollet
, “
Keras
,” https://keras.io/getting_started/faq/#how-should-i-cite-keras (Last viewed May 28, 2021).
48.
Abadi
,
M.
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
R.
Jozefowicz
,
Y.
Jia
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
M.
Schuster
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, “
Tensorflow: Large-scale machine learning on heterogeneous systems
,” http://tensorflow.org (Last viewed May 28, 2021).
49.
S.
Ioffe
and
C.
Szegedy
, “
Batch normalization: Accelerating deep network training by reducing internal covariate shift
,” arXiv:1502.03167 (
2015
).
50.
N.
Srivastava
,
G. E.
Hinton
,
A.
Krizhevsky
,
I.
Sutskever
, and
R.
Salakhutdinov
, “
Dropout: A simple way to prevent neural networks from overfitting
,”
J. Mach. Learn. Res.
15
,
1929
1958
(
2014
).
51.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2015
).
52.
H. S.
Lai
,
S. H.
Kil
, and
K. B.
Yoon
, “
Effects of defect size on failure of butt fusion welded MDPE pipe under tension
,”
J. Mech. Sci. Technol.
29
(
5
),
1973
1980
(
2015
).
53.
C.
Miao
,
Y.
Qin
,
W.
Guo
,
C.
An
,
Z.
Ling
, and
Z.
Chen
, “
Ultrasonic phased array inspection with water wedge for butt fusion joints of polyethylene pipe
,” in
Proceedings of the ASME 2019 Pressure Vessels and Piping Conference
, San Antonio, TX (July 14–19,
2019
).
54.
M. Z.
Alom
,
T. M.
Taha
,
C.
Yakopcic
,
S.
Westberg
,
P.
Sidike
,
M. S.
Nasrin
,
M.
Hasan
,
B. C.
Van Essen
,
A. A. S.
Awwal
, and
V. K.
Asari
, “
A state-of-the-art survey on deep learning theory and architectures
,”
Electronics
8
,
292
(
2019
).
55.
Y.
Ovadia
,
E.
Fertig
,
J.
Ren
,
Z.
Nado
,
D.
Sculley
,
S.
Nowozin
,
J. V.
Dillon
,
B.
Lakshminarayanan
, and
J.
Snoek
, “
Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift
,” in
Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019)
, Vancouver, Canada (December 8–14,
2019
).
56.
J.
Ren
,
P. J.
Liu
,
E.
Fertig
,
J.
Snoek
,
R.
Poplin
,
M. A.
DePristo
,
J. V.
Dillon
, and
B.
Lakshminarayanan
, “
Likelihood Ratios for Out-of-Distribution Detection
,” in
Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019)
, Vancouver, Canada (December 8–14,
2019
).
57.
ASTM F2634-10
, “
Standard test method for laboratory testing of polyethylene (PE) butt fusion joints using tensile-impact method
” (
ASTM International
,
West Conshohocken, PA
,
2010
).
58.
ASTM F2620-12
, “
Standard practice for heat fusion joining of polyethylene pipe and fittings
” (
ASTM International
,
West Conshohocken, PA
,
2012
).
You do not currently have access to this content.