Fine-scale mixing noise (FSMN) and broadband shock-associated noise (BBSAN) are the dominant components of supersonic jet noise in the sideline and upstream directions. We use the previously developed statistical FSMN and BBSAN models to compare the noise radiated from three different nozzles, i.e., a method of characteristics nozzle, a bi-conic nozzle, and a faceted nozzle at different operating conditions. A numerical sensitivity analysis is performed using the models by perturbing various model parameters and conditions such as nozzle pressure ratio (NPR), total temperature ratio, area ratio, and boundary layer thickness. We observed that FSMN is most sensitive to NPR and BBSAN is most sensitive to area ratio. We also examine the changes in source statistics and corresponding correlations of the radiated noise using the fluidic injection noise reduction technique. Noise reduction predictions relative to the baseline cases are compared at different operating conditions and similar reduction as the experimental measurements were obtained at over-expanded conditions. Finally, we analyze the noise source locations for both components of jet noise in the sideline direction. The trends predicted in this study increase understanding of the changes in source statistics and radiated noise for different nozzles over a range of operating conditions.

1.
J.
Doychak
, “
Department of Navy Jet Noise Reduction Project Overview
,” in
Proceedings of the 15th Annual Partners in Environmental Technology Technical Symposium and Workshop
, Washington, DC (November 30 – December 2,
2010
).
2.
T. K.
Patel
and
S. A. E.
Miller
, “
Statistical sources for broadband shock-associated noise using the Navier-Stokes equations
,”
J. Acoust. Soc. Am.
146
(
6
),
4339
4351
(
2019
).
3.
T. K.
Patel
and
S. A. E.
Miller
, “
Source of fine-scale turbulent mixing noise using the Navier–Stokes equations
,”
AIAA J.
59
(
6
),
2333
2338
(
2021
).
4.
C. K. W.
Tam
, “
Supersonic jet noise
,”
Ann. Rev. Fluid Mech.
27
(
1
),
17
43
(
1995
).
5.
M.
Harper-Bourne
and
M. J.
Fisher
, “
The noise from shocks waves in supersonic jets
,”
NATO AGARD-CP-131 11
(
NATO
,
Brussels, Belgium
,
1973
).
6.
C. K. W.
Tam
and
H. K.
Tanna
, “
Shock associated noise of supersonic jets from convergent-divergent nozzles
,”
J. Sound Vib.
81
(
3
),
337
358
(
1982
).
7.
C. K. W.
Tam
, “
Stochastic model theory of broadband shock associated noise from supersonic jets
,”
J. Sound Vib.
116
(
2
),
265
302
(
1987
).
8.
P. J.
Morris
and
S. A. E.
Miller
, “
Prediction of broadband shock-associated noise using Reynolds-averaged Navier-Stokes computational fluid dynamics
,”
AIAA J.
48
(
12
),
2931
2944
(
2010
).
9.
T.
Suzuki
, “
Wave-packet representation of shock-cell noise for a single round jet
,”
AIAA J.
54
(
12
),
3903
3917
(
2016
).
10.
C. K. W.
Tam
and
L.
Auriault
, “
Jet mixing noise from fine-scale turbulence
,”
AIAA J.
37
(
2
),
145
153
(
1999
).
11.
S. A. E.
Miller
, “
Noise from Isotropic Turbulence
,”
AIAA J.
55
(
3
),
755
773
(
2017
).
12.
M.
Dahl
and
A.
Khavaran
, “
The effect of nondeterministic parameters on shock-associated noise prediction modeling
,” in
Proceedings of the 16th AIAA/CEAS Aeroacoustics Conference
, Stockholm, Sweden (June 7–9,
2010
), AIAA Paper No. 2010-3841.
13.
J. B.
Freund
, “
Adjoint-based optimization for understanding and suppressing jet noise
,”
J. Sound Vib.
330
(
17
),
4114
4122
(
2011
).
14.
J.
Kim
,
D. J.
Bodony
, and
J. B.
Freund
, “
Adjoint-based control of loud events in a turbulent jet
,”
J. Fluid Mech.
741
,
28
59
(
2014
).
15.
H. K.
Tanna
, “
An experimental study of jet noise. Part II: Shock associated noise
,”
J. Sound Vib.
50
(
3
),
429
444
(
1977
).
16.
J. M.
Seiner
and
T. D.
Norum
, “
Experiments of shock associated noise of supersonic jets
,” in
Proceedings of the 12th Fluid and Plasma Dynamics Conference
, Williamsburg, VA (July 23–25,
1979
), AIAA Paper No. 79-47341.
17.
J. M.
Seiner
and
T. D.
Norum
, “
Aerodynamic aspects of shock containing jet plumes
,” in
Proceedings of the 6th Aeroacoustics Conference
, Hartford, CT (June 4–6, 1980), AIAA Paper No. 80-43600.
18.
T. D.
Norum
and
J. M.
Seiner
, “
Location and propagation of shock associated noise from supersonic jets
,” in
Proceedings of the 6th Aeroacoustics Conference
, Hartford, CT (June 4–6, 1980), AIAA Paper No. 80-43599.
19.
T. D.
Norum
and
J. M.
Seiner
, “
Measurements of mean static pressure and far-field acoustics of shock-containing supersonic jets
,”
NASA/TM-84521 19820025274
(
NASA
,
Washington, DC
,
1982
).
20.
T. D.
Norum
and
J. M.
Seiner
, “
Broadband shock noise from supersonic jets
,”
AIAA J.
20
(
1
),
68
73
(
1982
).
21.
J. M.
Seiner
and
J. C.
Yu
, “
Acoustic near-field properties associated with broadband shock noise
,”
AIAA J.
22
(
9
),
1207
1215
(
1984
).
22.
J. E.
Bridges
and
M. P.
Wernet
, “
Turbulence associated with broadband shock noise in hot jets
,”
NASA/TM-2008-215274
(
NASA
,
Washington, DC
,
2008
).
23.
K.
Viswanathan
,
M. B.
Alkislar
, and
M. J.
Czech
, “
Characteristics of the shock noise component of jet noise
,”
AIAA J.
48
(
1
),
25
46
(
2010
).
24.
C.-W.
Kuo
,
D. K.
McLaughlin
,
P. J.
Morris
, and
K.
Viswanathan
, “
Effects of jet temperature on broadband shock-associated noise
,”
AIAA J.
53
(
6
),
1515
1530
(
2015
).
25.
S. A. E.
Miller
, “
The scaling of broadband shock-associated noise with increasing temperature
,”
Int. J. Aeroacoust.
14
(
1–2
),
305
326
(
2015
).
26.
J.
Mabe
, “
Variable area jet nozzle for noise reduction using shape memory alloy actuators
,”
J. Acoust. Soc. Am.
123
(
5
),
3871
3871
(
2008
).
27.
U.
Michel
, “
The benefits of variable area fan nozzles on turbofan engines
,” in
Proceedings of the 49th AIAA Aerospace Sciences Meeting
, Orlando, FL (January 4–7,
2011
), AIAA Paper No. 2011-226.
28.
C. K. W.
Tam
,
M.
Golebiowski
, and, and
J. M.
Seiner
, “
On the two components of turbulent mixing noise from supersonic jets
,” in
Proceedings of the 2nd AIAA/CEAS Aeroacoustics Conference
, State College, PA (May 6–8,
1996
), AIAA Paper No. 96-1716.
29.
M.
Saleem
,
O.
Lopez Rodriguez
,
E.
Gutmark
,
J.
Liu
, and, and
Y.
Khine
, “
Noise and flow characterization of supersonic jets emanating from a circular and faceted nozzles
,” in
Proceedings of the AIAA Scitech 2020 Forum
, Orlando, FL (January 6–10,
2020
), AIAA Paper No. 2020-1247.
30.
K. B. M. Q.
Zaman
, “
Effect of initial boundary-layer state on subsonic jet noise
,”
AIAA J.
50
(
8
),
1784
1795
(
2012
).
31.
C.
Bogey
and
C.
Bailly
, “
Influence of nozzle-exit boundary-layer conditions on the flow and acoustic fields of initially laminar jets
,”
J. Fluid Mech.
663
,
507
538
(
2010
).
32.
C.
Bogey
,
O.
Marsden
, and
C.
Bailly
, “
Large-eddy simulation of the flow and acoustic fields of a Reynolds number 105 subsonic jet with tripped exit boundary layers
,”
Phys. Fluids
23
(
3
),
035104
(
2011
).
33.
G. A.
Brès
,
P.
Jordan
,
V.
Jaunet
,
M. L.
Rallic
,
A. V. G.
Cavalieri
,
A.
Towne
,
S. K.
Lele
,
T.
Colonius
, and
O. T.
Schmidt
, “
Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets
,”
J. Fluid Mech.
851
,
83
124
(
2018
).
34.
N. P.
Breen
and
K. K.
Ahuja
, “
Measuring jet noise source locations with acoustic beamforming
,” in
Proceedings of the 53rd AIAA Aerospace Sciences Meeting
, Kissimmee, FL (January 5–9,
2015
), AIAA Paper No. 2015-0735.
35.
L.
Maestrello
, “
An experimental study on porous plug jet noise suppressor
,” in
Proceedings of the 5th Aeroacoustics Conference
, Seattle, WA (March 12–14,
1979
), AIAA Paper No. 79-0673.
36.
J. E.
Bridges
,
K. B. M. Q.
Zaman
, and
B.
Heberling
, “
Basics of mixer-ejectors for quiet propulsion
,” in
Proceedings of the IAA Aviation 2020 Forum
, Virtual Event (June 15–19,
2020
), AIAA Paper No. 2020-2505.
37.
D. L.
Huff
, “
Noise reduction technologies for turbofan engines
,”
NASA/TM-2007-214495
(
NASA
,
Washington, DC
,
2007
).
38.
K.
Viswanathan
,
A.
Krothapalli
,
J. M.
Seiner
,
M. J.
Czech
,
B.
Greska
, and
B. J.
Jansen
, “
Assessment of low-noise nozzle designs for fighter aircraft applications
,”
J. Aircr.
48
(
2
),
412
423
(
2011
).
39.
J. M.
Seiner
and
M. M.
Gilinsky
, “
Nozzle thrust optimization while reducing jet noise
,”
AIAA J.
35
(
3
),
420
427
(
1997
).
40.
N. E.
Murray
and
B. J.
Jansen
, “
Performance efficient jet noise reduction for supersonic nozzles
,”
Int. J. Aeroacoust.
11
(
7-8
),
937
956
(
2012
).
41.
P. J.
Morris
,
D. K.
McLaughlin
, and
C.-W.
Kuo
, “
Noise reduction in supersonic jets by nozzle fluidic inserts
,”
J. Sound Vib.
332
(
17
),
3992
4003
(
2013
).
42.
M.
Samimy
,
J.-H.
Kim
,
J.
Kastner
,
I.
Adamovich
, and
Y.
Utkin
, “
Active control of a Mach 0.9 jet for noise mitigation using plasma actuators
,”
AIAA J.
45
(
4
),
890
901
(
2007
).
43.
J. A.
Schetz
and
F. S.
Billig
, “
Penetration of gaseous jets injected into a supersonic stream
,”
J. Spacecr. Rockets
3
(
11
),
1658
1665
(
1966
).
44.
D.
Papamoschou
and
D. G.
Hubbard
, “
Visual observations of supersonic transverse jets
,”
Exp. Fluids
14
(
6
),
468
476
(
1993
).
45.
R. W.
Powers
,
S.
Hromisin
,
D. K.
McLaughlin
, and, and
P. J.
Morris
, “
Mean velocity and turbulence measurements of supersonic jets with fluidic inserts
,” in
Proceedings of the 54th AIAA Aerospace Sciences Meeting
, San Diego, CA (January 4–8,
2016
), AIAA Paper No. 2016-0001.
46.
D. K.
McLaughlin
,
P. J.
Morris
, and
S.
Martens
, “
Scaled demonstration of fluid insert noise reduction for tactical fighter aircraft engines
,”
J. Aircr.
56
(
5
),
1935
1941
(
2019
).
47.
C.
Prasad
and
P. J.
Morris
, “
Effect of fluid injection on turbulence and noise reduction of a supersonic jet
,”
Philos. Trans. R. Soc. A
377
(
2159
),
20190082
(
2019
).
48.
P. J.
Morris
,
D. K.
McLaughlin
,
R. W.
Powers
, and, and
M. J.
Kapusta
, “
Prediction, experiments and optimization of high-speed jet noise reduction using fluidic inserts
,” in
Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, Cleveland, OH (July 28–30,
2014
), AIAA Paper No. 2014-3737.
49.
M.
Coderoni
,
A. S.
Lyrintzis
, and
G. A.
Blaisdell
, “
Noise reduction analysis of supersonic unheated jets with fluidic injection using large eddy simulations
,”
Int. J. Aeroacoust.
17
(
4–5
),
467
501
(
2018
).
50.
D.
Cuppoletti
,
E.
Gutmark
,
H.
Hafsteinsson
, and
L.-E.
Eriksson
, “
Elimination of shock-associated noise in supersonic jets by destructive wave interference
,”
AIAA J.
57
(
2
),
720
734
(
2019
).
51.
R. T.
Biedron
,
J.-R.
Carlson
,
J. M.
Derlaga
,
P. A.
Gnoffo
,
D. P.
Hammond
,
W. T.
Jones
,
B.
Kleb
,
E. M.
Lee-Rausch
,
E. J.
Nielsen
,
M. A.
Park
,
C. L.
Rumsey
,
J. L.
Thomas
,
K. B.
Thompson
, and
W. A.
Wood
, “
FUN3D Manual 13.4
,”
NASA/TM-2018-220096
(
NASA
,
Washington, DC
,
2018
).
52.
C.
Brown
and
J. E.
Bridges
, “
Small hot jet acoustic rig validation
,”
NASA/TM-2006-214234
(
NASA
,
Washington, DC
,
2006
).
53.
T. K.
Patel
, “
Analysis of supersonic jet noise in the sideline and upstream directions using the Navier-Stokes equations
,” Ph.D. thesis,
University of Florida
,
Gainesville, FL
,
2020
.
54.
A. R.
Pilon
,
R. W.
Powers
,
D. K.
McLaughlin
, and
P. J.
Morris
, “
Design and analysis of a supersonic jet noise reduction concept
,”
J. Aircr.
54
(
5
),
1705
1717
(
2017
).
55.
D. R.
Cuppoletti
, “
Supersonic jet noise reduction with novel fluidic injection techniques
,” Ph.D. thesis,
University of Cincinnati
,
Cincinnati, OH
,
2013
.
56.
T.
Rice
, “
2D and 3D Method of characteristic tools for complex nozzle development final report
,”
NASA/RTDC-TPS-481
(
NASA
,
Washington, DC
,
2003
).
57.
C.
Prasad
and
P. J.
Morris
, “
Steady active control of noise radiation from highly heated supersonic jets
,”
J. Acoust. Soc. Am.
149
(
2
),
1306
1317
(
2021
).
You do not currently have access to this content.