The energy dissipated during vocal fold (VF) contact is a predictor of phonotrauma. Difficulty measuring contact pressure has forced prior energy dissipation estimates to rely upon generalized approximations of the contact dynamics. To address this shortcoming, contact pressure was measured in a self-oscillating synthetic VF model with high spatiotemporal resolution using a hemilaryngeal configuration. The approach yields a temporal resolution of less than 0.26 ms and a spatial resolution of 0.254 mm in the inferior-superior direction. The average contact pressure was found to be 32% of the peak contact pressure, 60% higher than the ratio estimated in prior studies. It was found that 52% of the total power was dissipated due to collision. The power dissipated during contact was an order of magnitude higher than the power dissipated due to internal friction during the non-contact phase of oscillation. Both the contact pressure magnitude and dissipated power were found to be maximums at the mid anterior-posterior position, supporting the idea that collision is responsible for the formation of benign lesions, which normally appear at the middle third of the VF.

1.
I. R.
Titze
, “
Mechanical stress in phonation
,”
J. Voice
8
(
2
),
99
105
(
1994
).
2.
T.
Kojima
,
M.
Van Deusen
,
W. G.
Jerome
,
C. G.
Garrett
,
M. P.
Sivasankar
,
C. K.
Novaleski
, and
B.
Rousseau
, “
Quantification of acute vocal fold epithelial surface damage with increasing time and magnitude doses of vibration exposure
,”
PLoS One
9
(
3
),
e91615
(
2014
).
3.
R. E.
Hillman
,
C. E.
Stepp
,
J. H.
Van Stan
,
M.
Zañartu
, and
D. D.
Mehta
, “
An updated theoretical framework for vocal hyperfunction
,”
Am. J. Speech Lang. Pathol.
29
(
4
),
2254
2260
(
2020
).
4.
J. J.
Jiang
and
I. R.
Titze
, “
Measurement of vocal fold intraglottal pressure and impact stress
,”
J. Voice
8
,
132
144
(
1994
).
5.
I. R.
Titze
,
J. G.
Svec
, and
P. S.
Popolo
, “
Vocal dose measures
,”
J. Speech Lang. Hear. Res.
46
,
919
932
(
2003
).
6.
J. H.
Van Stan
,
D. D.
Mehta
,
A. J.
Ortiz
,
J. A.
Burns
,
K. L.
Marks
,
L. E.
Toles
,
T.
Stadelman-Cohen
,
C.
Krusemark
,
J.
Muise
,
T.
Hron
,
S.
Zeitels
,
A. B.
Fox
, and
R. E.
Hillman
, “
Changes in a daily phonotrauma index (DPI) after laryngeal surgery and voice therapy: Implications for the role of daily voice use in the etiology and pathophysiology of phonotraumatic vocal hyperfunction
,”
J. Speech Lang. Hear. Res.
63
(
12
),
3934
3944
(
2020
).
7.
I. R.
Titze
and
E. J.
Hunter
, “
Comparison of vocal vibration-dose measures for potential-damage risk criteria
,”
J. Speech Lang. Hear. Res.
58
(
5
),
1425
1439
(
2015
).
8.
K.
Verdolini
and
L. O.
Ramig
, “
Occupational risks for voice problems
,”
Logoped. Phoniatr. Vocol.
26
(
1
),
37
46
(
2001
).
9.
L.
Rantala
and
E.
Vilkman
, “
Relationship between subjective voice complaints and acoustic parameters in female teachers' voices
,”
J. Voice
13
(
4
),
484
495
(
1999
).
10.
F.
Alipour
and
R. C.
Scherer
, “
Dynamic glottal pressures in an excised hemilarynx model
,”
J. Voice
14
(
4
),
443
454
(
2000
).
11.
L.
Chen
and
L.
Mongeau
, “
Verification of two minimally invasive methods for the estimation of the contact pressure in human vocal folds during phonation
,”
J. Acoust. Soc. Am.
130
(
3
),
1618
1627
(
2011
).
12.
M. M.
Hess
,
K.
Verdolini
,
W.
Bierhals
,
U.
Mansmann
, and
M.
Gross
, “
Endolaryngeal contact pressures
,”
J. Voice
12
,
50
67
(
1998
).
13.
K.
Verdolini
,
R.
Chan
,
I. R.
Titze
,
M.
Hess
, and
W.
Bierhals
, “
Correspondence of electroglottographic closed quotient to vocal fold impact stress in excised canine larynges
,”
J. Voice
12
(
4
),
415
423
(
1998
).
14.
K.
Verdolini
,
M. M.
Hess
,
I. R.
Titze
,
W.
Bierhals
, and
M.
Gross
, “
Investigation of vocal fold impact stress in human subjects
,”
J. Voice
13
(
2
),
184
202
(
1999
).
15.
H. E.
Gunter
,
R. D.
Howe
,
S. M.
Zeitels
,
J. B.
Kobler
, and
R. E.
Hillman
, “
Measurement of vocal fold collision forces during phonation
,”
J. Speech Lang. Hear. Res.
48
(
3
),
576
(
2005
).
16.
M.
Motie-Shirazi
,
M.
Zañartu
,
S. D.
Peterson
,
D. D.
Mehta
,
J. B.
Kobler
,
R. E.
Hillman
, and
B. D.
Erath
, “
Toward development of a vocal fold contact pressure probe: Sensor characterization and validation using synthetic vocal fold models
,”
Appl. Sci.
9
(
15
),
3002
(
2019
).
17.
D. D.
Mehta
,
J. B.
Kobler
,
S. M.
Zeitels
,
M.
Zañartu
,
B. D.
Erath
,
M.
Motie-Shirazi
,
S. D.
Peterson
,
R. H.
Petrillo
, and
R. E.
Hillman
, “
Toward development of a vocal fold contact pressure probe: Bench-top validation of a dual-sensor probe using excised human larynx models
,”
Appl. Sci.
9
(
20
),
4360
(
2019
).
18.
H.
Bakhshaee
,
J.
Young
,
J. C.
Yang
,
L.
Mongeau
, and
A. K.
Miri
, “
Determination of strain field on the superior surface of excised larynx vocal folds using dic
,”
J. Voice
27
(
6
),
659
667
(
2013
).
19.
S.
Weiss
,
A.
Sutor
,
S. J.
Rupitsch
,
S.
Kniesburges
,
M.
Döllinger
, and
R.
Lerch
, “
Development of a small film sensor for the estimation of the contact pressure of artificial vocal folds
,” in
Proceedings of Meetings on Acoustics ICA2013
, Montreal, Canada (June 2–7,
2013
), p.
060307
.
20.
M.
Spencer
,
T.
Siegmund
, and
L.
Mongeau
, “
Determination of superior surface strains and stresses, and vocal fold contact pressure in a synthetic larynx model using digital image correlation
,”
J. Acoust. Soc. Am.
123
(
2
),
1089
1103
(
2008
).
21.
C.
Tao
and
J. J.
Jiang
, “
Mechanical stress during phonation in a self-oscillating finite-element vocal fold model
,”
J. Biomech.
40
,
2191
2198
(
2007
).
22.
P.
Bhattacharya
and
T.
Siegmund
, “
A computational study of systemic hydration in vocal fold collision
,”
Comput. Methods Biomech. Biomed. Eng.
17
(
16
),
1835
1852
(
2014
).
23.
Z.
Zhang
, “
Vocal fold contact pressure in a three-dimensional body-cover phonation model
,”
J. Acoust. Soc. Am.
146
(
1
),
256
265
(
2019
).
24.
P. J.
Hadwin
,
M.
Motie-Shirazi
,
B. D.
Erath
, and
S. D.
Peterson
, “
Bayesian inference of vocal fold material properties from glottal area waveforms using a 2D finite element model
,”
Appl. Sci.
9
(
13
),
2735
(
2019
).
25.
M. E.
Díaz-Cádiz
,
S. D.
Peterson
,
G. E.
Galindo
,
V. M.
Espinoza
,
M.
Motie-Shirazi
,
B. D.
Erath
, and
M.
Zañartu
, “
Estimating vocal fold contact pressure from raw laryngeal high-speed videoendoscopy using a Hertz contact model
,”
Appl. Sci.
9
(
11
),
2384
(
2019
).
26.
A. H.
Mendelsohn
and
Z.
Zhang
, “
Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds
,”
J. Acoust. Soc. Am.
130
(
5
),
2961
2968
(
2011
).
27.
M.
Motieshirazi
,
M.
Zañartu
,
S. D.
Peterson
, and
B. D.
Erath
, “
Intraglottal aerodynamic pressure and energy transfer in a self-oscillating synthetic model of the vocal folds
,”
medRxiv
(
2020
).
28.
B. H.
Story
, “
Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002
,”
J. Acoust. Soc. Am.
123
(
1
),
327
335
(
2008
).
29.
M.
Döllinger
,
D. A.
Berry
, and
D. W.
Montequin
, “
The influence of epilarynx area on vocal fold dynamics
,”
Otolaryngol. Head Neck Surg.
135
(
5
),
724
729
(
2006
).
30.
K.
Comley
and
N.
Fleck
, “
The compressive response of porcine adipose tissue from low to high strain rate
,”
Int. J. Impact Eng.
46
,
1
10
(
2012
).
31.
Y. B.
Min
,
I. R.
Titze
, and
F.
Alipour-Haghighi
, “
Stress-strain response of the human vocal ligament
,”
Ann. Otol. Rhinol. Laryngol.
104
(
7
),
563
569
(
1995
).
32.
D. K.
Chhetri
,
Z.
Zhang
, and
J.
Neubauer
, “
Measurement of Young's modulus of vocal folds by indentation
,”
J. Voice
25
,
1
7
(
2011
).
33.
G. R.
Dion
,
P. G.
Coelho
,
S.
Teng
,
M. N.
Janal
,
M. R.
Amin
, and
R. C.
Branski
, “
Dynamic nanomechanical analysis of the vocal fold structure in excised larynges
,”
Laryngoscope
127
(
7
),
E225
E230
(
2017
).
34.
F.
Alipour
and
S.
Vigmostad
, “
Measurement of vocal folds elastic properties for continuum modeling
,”
J. Voice
26
(
6
),
816
821
(
2012
).
35.
R. W.
Chan
and
I. R.
Titze
, “
Viscoelastic shear properties of human vocal fold mucosa: Measurement methodology and empirical results
,”
J. Acoust. Soc. Am.
106
,
2008
2021
(
1999
).
36.
R. W.
Chan
,
M.
Fu
,
L.
Young
, and
N.
Tirunagari
, “
Relative contributions of collagen and elastin to elasticity of the vocal fold under tension
,”
Ann. Biomed. Eng.
35
(
8
),
1471
1483
(
2007
).
37.
R. W.
Chan
and
M. L.
Rodriguez
, “
A simple-shear rheometer for linear viscoelastic characterization of vocal fold tissues at phonatory frequencies
,”
J. Acoust. Soc. Am.
124
(
2
),
1207
1219
(
2008
).
38.
L.
Oren
,
D.
Dembinski
,
E.
Gutmark
, and
S.
Khosla
, “
Characterization of the vocal fold vertical stiffness in a canine model
,”
J. Voice
28
(
3
),
297
304
(
2014
).
39.
R. E.
Kania
,
S.
Hans
,
D. M.
Hartl
,
P.
Clement
,
L.
Crevier-Buchman
, and
D. F.
Brasnu
, “
Variability of electroglottographic glottal closed quotients: Necessity of standardization to obtain normative values
,”
Arch. Otolaryngol. Head Neck Surg.
130
(
3
),
349
352
(
2004
).
40.
J.
Lohscheller
,
J. G.
Švec
, and
M.
Döllinger
, “
Vocal fold vibration amplitude, open quotient, speed quotient and their variability along glottal length: Kymographic data from normal subjects
,”
Logoped. Phoniatr. Vocol.
38
(
4
),
182
192
(
2013
).
41.
M.
Döllinger
and
D. A.
Berry
, “
Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation
,”
J. Voice
20
(
3
),
401
413
(
2006
).
42.
I. R.
Titze
and
F.
Alipour
,
The Myoelastic Aerodynamic Theory of Phonation
(
National Center for Voice and Speech
,
Salt Lake City, UT
,
2006
).
43.
R. J.
Baken
and
R. F.
Orlikoff
,
Clinical Measurement of Speech and Voice
(
Cengage Learning
,
Boston, MA
,
2000
).
44.
P. R.
Murray
and
S. L.
Thomson
, “
Vibratory responses of synthetic, self-oscillating vocal fold models
,”
J. Acoust. Soc. Am.
132
(
5
),
3428
3438
(
2012
).
45.
See Supplementary materials at https://doi.org/10.1121/10.0005596 for a video showing the progression of the intraglottal pressure distribution.
46.
K. L.
Syndergaard
,
S.
Dushku
, and
S. L.
Thomson
, “
Electrically conductive synthetic vocal fold replicas for voice production research
,”
J. Acoust. Soc. Am.
142
(
1
),
EL63
EL68
(
2017
).
47.
J. J.
Jiang
,
Y.
Zhang
,
M. P.
Kelly
,
E. T.
Bieging
, and
M. R.
Hoffman
, “
An automatic method to quantify mucosal waves via videokymography
,”
Laryngoscope
118
(
8
),
1504
1510
(
2008
).
48.
L.
Edelsten
,
J. E.
Jeffrey
,
L. V.
Burgin
, and
R. M.
Aspden
, “
Viscoelastic deformation of articular cartilage during impact loading
,”
Soft Mater.
6
(
20
),
5206
5212
(
2010
).
49.
K.
Anderson
,
J.
Oleson
, and
T.
Anthony
, “
Variability in coefficient of restitution in human facial skin
,”
Skin. Res. Technol.
20
(
3
),
355
362
(
2014
).

Supplementary Material

You do not currently have access to this content.