The acoustics of the bassoon has been the subject of relatively few studies compared with other woodwind instruments. One reason for this may lie in its complicated resonator geometry, which includes irregularly spaced toneholes with chimney heights ranging from 3 to 31 mm. The current article evaluates the effect of the open and closed tonehole lattice (THL) on the acoustic response of the bassoon resonator. It is shown that this response can be divided into three distinct frequency bands that are determined by the open and closed THL: below 500 Hz, 500–2200 Hz, and above 2200 Hz. The first is caused by the stopband of the open THL, where the low frequency effective length of the instrument is determined by the location of the first open tonehole. The second is due to the passband of the open THL, such that the modes are proportional to the total length of the resonator. The third is due to the closed THL, where part of the acoustical power is trapped within the resonator. It is proposed that these three frequency bands impact the radiated spectrum by introducing a formant in the vicinity of 500 Hz and suppressing radiation above 2200 Hz for most first register fingerings.

1.
A. H.
Benade
and
S. N.
Kouzoupis
, “
The clarinet spectrum: Theory and experiment
,”
J. Acoust. Soc. Am.
83
(
1
),
292
304
(
1988
).
2.
A. H.
Benade
and
S. J.
Lutgen
, “
The saxophone spectrum
,”
J. Acoust. Soc. Am.
83
,
1900
1907
(
1988
).
3.
E. A.
Petersen
,
T.
Colinot
,
P.
Guillemain
, and
J.
Kergomard
, “
The link between the tonehole lattice cutoff frequency and clarinet sound radiation: A quantitative study
,”
Acta Acust.
4
(
5
),
18
(
2020
).
4.
L.
Brillouin
and
M.
Parodi
,
Wave Propagation in Periodic Structures
(
Dover Publications
,
New York
,
1946
).
5.
A. H.
Benade
, “
On the mathematical theory of woodwind finger holes
,”
J. Acoust. Soc. Am.
32
,
1591
1608
(
1960
).
6.
D. H.
Keefe
, “
Woodwind air column models
,”
J. Acoust. Soc. Am.
88
,
35
51
(
1990
).
7.
E.
Moers
and
J.
Kergomard
, “
On the cutoff frequency of clarinet-like instruments. Geometrical versus acoustical regularity
,”
Acta Acust. united Acust.
97
,
984
996
(
2011
).
8.
E.
Petersen
,
T.
Colinot
,
J.
Kergomard
, and
P.
Guillemain
, “
On the tonehole lattice cutoff frequency of conical resonators: Applications to the saxophone
,”
Acta Acust.
4
(
4
),
13
(
2020
).
9.
M.
Shimizu
,
T.
Naoi
, and
T.
Idogawa
, “
Vibrations of the reed and the air column in the bassoon
,”
J. Acoust. Soc. Jpn.
10
(
5
),
269
278
(
1989
).
10.
T.
Grothe
, “
Experimental investigation of bassoon acoustics
,” Ph.D. thesis,
Technischen Universität Dresden
,
Dresden, Germany
,
2014
.
11.
J.
Kergomard
,
P.
Guillemain
,
P.
Sanchez
,
C.
Vergez
,
J.-P.
Dalmont
,
B.
Gazengel
, and
S.
Karkar
, “
Role of the resonator geometry on the pressure spectrum of reed conical instruments
,”
Acta Acust. united Acust.
105
,
368
380
(
2019
).
12.
A. H.
Benade
, “
From instrument to ear in a room: Direct or via recording
,”
J. Audio Eng. Soc.
33
(
4
),
218
233
(
1985
), available at http://www.aes.org/e-lib/browse.cfm?elib=4457.
13.
S.
Weinzierl
,
M.
Vorländer
,
G.
Behler
,
F.
Brinkmann
,
H. v
Coler
,
E.
Detzner
,
J.
Krämer
,
A.
Lindau
,
M.
Pollow
,
F.
Schulz
, and
N. R.
Shabtai
, “
A database of anechoic microphone array measurements of musical instruments
” (
2017
).
14.
G.
Behler
,
N.
Shabtai
,
S.
Weinzierl
, and
M.
Vorlander
, “
Musical instrument directivity database for simulation and auralization
,”
J. Acoust. Soc. Am.
140
,
3175
(
2016
).
15.
N. H.
Fletcher
and
T. D.
Rossing
,
The Physics of Musical Instruments
, 2nd ed. (
Springer
,
New York
,
1998
).
16.
J. C.
Le Roux
,
M.
Pachebat
, and
J.-P.
Dalmont
, “
A new impedance sensor for industrial applications
,” in
Proceedings of the Acoustics 2012 Nantes Conference
, Nantes, France (April 23–27,
2012
).
17.
V. H.
Turcotte
, “
Generation and conception of measuring tools for geometrical and acoustic properties for modern Almenräder-Heckel system bassoons
,” in
Proceedings of ISMA 2019
, Detmold, Germany (September 13–17,
2019
), pp.
407
414
.
18.
G.
Scavone
, “
An acoustic analysis of single-reed woodwind instruments with an emphasis on design and performance issues and digital waveguide modeling techniques
,” Ph.D. thesis,
Stanford University
,
Stanford, CA
,
1997
.
19.
E.
Petersen
,
P.
Guillemain
,
J.
Kergomard
, and
T.
Colinot
, “
The effect of the cutoff frequency on the sound production of a clarinet-like instrument
,”
J. Acoust. Soc. Am.
145
(
6
),
3784
3794
(
2019
).
20.
A. H.
Benade
,
Fundamentals of Musical Acoustics
(
Oxford University
,
London
,
1976
).
21.
F.
Fransson
, “
The source spectrum of double-reed wood-wind instruments
,”
Department for Speech, Music and Hearing Quarterly Progress and Status Report,
Royal Institute of Technology
,
Stockholm, Sweden
,
1966
.
22.
J.
Meyer
,
Acoustics and the Performance of Music
(
Springer
,
New York
,
2009
).
23.
X.
Wang
,
W.
Zhu
, and
Y.
Zhou
, “
Sound transmission in a duct with a side-branch tube array mounted periodically
,”
J. Acoust. Soc. Am.
139
(
6
),
EL202
EL208
(
2016
).
24.
J.
Kergomard
and
J. M.
Heinrich
, “
Le Basson: Historique, Fabrication, Acoustique. L'anche Double: Fabrication, Botanique, le Grattage
,” Bulletin du Groupe d'Acoustique Musicale No. 82-83 (Université Paris VI, Paris, France,
1975
).
25.
A.
Chaigne
and
J.
Kergomard
,
Acoustics of Musical Instruments
(
Springer-Verlag
,
New York
,
2016
).
26.
G. W.
Stewart
, “
Acoustic wave filters
,”
Phys. Rev.
20
,
528
551
(
1922
).
27.
A. D.
Pierce
,
Acoustics: An Introduction to Its Physical Principles and Applications
(
Acoustical Society of America
,
Melville, NY
,
1989
).
28.
A.
Lefebvre
and
G. P.
Scavone
, “
Characterization of woodwind instrument toneholes with the finite element method
,”
J. Acoust. Soc. Am.
131
(
4
),
3153
3163
(
2012
).
29.
V.
Dubos
,
J.
Kergomard
,
A.
Khettabi
,
J.-P.
Dalmont
,
D. H.
Keefe
, and
C. J.
Nederveen
, “
Theory of sound propagation in a duct with a branched tube using modal decomposition
,”
Acta Acust. united Acust.
85
,
153
169
(
1999
).
30.
J.-P.
Dalmont
,
C.
Nederveen
,
V.
Dubos
,
S.
Ollivier
,
V.
Méserette
, and
E.
Sligte
, “
Experimental determination of the equivalent circuit of an open side hole: Linear and non linear behaviour
,”
Acta Acust. united Acust.
88
,
567
575
(
2002
).
31.
D.
Davis
,
G.
Stokes
,
D.
Moore
, and
G.
Stevens
, “
Theoretical and experimental investigation of mufflers with comments on engine-exhaust muffler design
,”
Report 1192
(
National Advisory Committee for Aeronautics
,
Washington, DC
,
1954
).
32.
R.
Tournemenne
and
J.
Chabassier
, “
A comparison of a one-dimensional finite element method and the transfer matrix method for the computation of wind music instrument impedance
,”
Acta Acust. united Acust.
105
,
838
849
(
2019
).
33.
J.
Backus
, “
Input impedance curves for the reed woodwind instruments
,”
J. Acoust. Soc. Am.
56
(
4
),
1266
1279
(
1974
).
34.
M.
Chotteau
, “
The isospectrum clarinet system
,” Master's thesis,
Case Western Reserve University
,
Cleveland, OH
,
1971
.
35.
J.
Kergomard
(personal communication, 2019).
You do not currently have access to this content.