The acoustic radiation force produced by ultrasonic waves is the “workhorse” of particle manipulation in acoustofluidics. Nonspherical particles are also subjected to a mean torque known as the acoustic radiation torque. Together they constitute the mean acoustic fields exerted on the particle. Analytical methods alone cannot calculate these fields on arbitrarily shaped particles in actual fluids and are no longer fit for purpose. Here, a semi-analytical approach is introduced for handling subwavelength axisymmetric particles immersed in an isotropic Newtonian fluid. The obtained mean acoustic fields depend on the scattering coefficients that reflect the monopole and dipole modes. These coefficients are determined by numerically solving the scattering problem. Our method is benchmarked by comparison with the exact result for a subwavelength rigid sphere in water. Besides, a more realistic case of a red blood cell immersed in blood plasma under a standing ultrasonic wave is investigated with our methodology.

1.
G. R.
Torr
, “
The acoustic radiation force
,”
Am. J. Phys.
52
,
402
408
(
1984
).
2.
L. V.
King
, “
On the theory of the inertia and diffraction corrections for the Rayleigh disc
,”
Proc. R. Soc. A
153
,
17
(
1935
).
3.
L.
Zhang
and
P. L.
Marston
, “
Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects
,”
Phys. Rev. E
84
(
6
),
065601
(
2011
).
4.
G. T.
Silva
, “
Acoustic radiation force and torque on an absorbing compressible particle in an inviscid fluid
,”
J. Acoust. Soc. Am.
136
(
5
),
2405
2413
(
2014
).
5.
F.
Nadal
and
E.
Lauga
, “
Small acoustically forced symmetric bodies in viscous
,”
J. Acoust. Soc. Am.
139
,
1081
1092
(
2016
).
6.
G. T.
Silva
and
B. W.
Drinkwater
, “
Acoustic radiation force exerted on a small spheroidal rigid particle by a beam of arbitrary wavefront: Examples of traveling and standing plane waves
,”
J. Acoust. Soc. Am.
144
(
5
),
El453
(
2018
).
7.
L.
Zhang
, “
Reversals of orbital angular momentum transfer and radiation torque
,”
Phys. Rev. Appl.
10
,
034039
(
2018
).
8.
Z.
Gong
,
P. L.
Marston
, and
W.
Li
, “
T-matrix evaluation of three-dimensional acoustic radiation forces on nonspherical objects in Bessel beams with arbitrary order and location
,”
Phys. Rev. E
99
,
063004
(
2019
).
9.
Z.
Gong
,
P. L.
Marston
, and
W.
Li
, “
Reversals of acoustic radiation torque in Bessel beams using theoretical and numerical implementations in three dimensions
,”
Phys. Rev. Appl.
11
,
064022
(
2019
).
10.
T. S.
Jerome
,
Y. A.
Ilinskii
,
E. A.
Zabolotskaya
, and
M. F.
Hamilton
, “
Born approximation of acoustic radiation force and torque on soft objects of arbitrary shape
,”
J. Acoust. Soc. Am.
145
,
36
(
2019
).
11.
J. H.
Lopes
,
E. B.
Lima
,
J. P.
Leão-Neto
, and
G. T.
Silva
, “
Acoustic spin transfer to a subwavelength spheroidal particle
,”
Phys. Rev. E
101
,
043102
(
2020
).
12.
J. P.
Leão-Neto
,
J. H.
Lopes
, and
G. T.
Silva
, “
Acoustic radiation torque exerted on a subwavelength spheroidal particle by a traveling and standing plane wave
,”
J. Acoust. Soc. Am.
147
(
4
),
2177
2183
(
2020
).
13.
T. S.
Jerome
,
Y. A.
Ilinskii
,
E. A.
Zabolotskaya
, and
M. F.
Hamilton
, “
Acoustic radiation force on a compressible spheroid
,”
J. Acoust. Soc. Am.
148
,
2403
2415
(
2020
).
14.
Z.
Gong
and
M.
Baudoin
, “
Acoustic radiation torque on a particle in a fluid: An angular spectrum based compact expression
,”
J. Acoust. Soc. Am.
148
,
3131
3140
(
2020
).
15.
J. P.
Leão-Neto
,
M.
Hoyos
,
J.-L.
Aider
, and
G. T.
Silva
, “
Acoustic radiation force and torque on spheroidal particles in an ideal cylindrical chamber
,”
J. Acoust. Soc. Am.
149
,
285
295
(
2021
).
16.
T.
Hasegawa
and
K.
Yosioka
, “
Acoustic-radiation force on a solid elastic sphere
,”
J. Acoust. Soc. Am.
46
,
1139
1143
(
1969
).
17.
G. T.
Silva
,
T. P.
Lobo
, and
F. G.
Mitri
, “
Radiation torque produced by an arbitrary acoustic wave
,”
Europhys. Lett.
97
,
054003
(
2012
).
18.
F. G.
Mitri
,
T. P.
Lobo
, and
G. T.
Silva
, “
Axial acoustic radiation torque of a Bessel vortex beam on spherical shells
,”
Phys. Rev. E
85
(
2
),
026602
(
2012
).
19.
D.
Baresch
,
J.-L.
Thomas
, and
R.
Marchiano
, “
Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere
,”
J. Acoust. Soc. Am.
133
,
25
36
(
2013
).
20.
J. P.
Leão-Neto
,
J. H.
Lopes
, and
G. T.
Silva
, “
Core-shell particles that are unresponsive to acoustic radiation force
,”
Phys. Rev. Appl.
6
(
2
),
024025
(
2016
).
21.
J. P.
Leão-Neto
and
G. T.
Silva
, “
Acoustic radiation force and torque exerted on a small viscoelastic particle in an ideal fluid
,”
Ultrasonics
71
,
1
11
(
2016
).
22.
G. T.
Silva
,
J. H.
Lopes
,
J. P.
Leão-Neto
,
M. K.
Nichols
, and
B. W.
Drinkwater
, “
Particle patterning by ultrasonic standing waves in a rectangular cavity
,”
Phys. Rev. Appl.
11
,
054044
(
2019
).
23.
A. A.
Doinikov
, “
Acoustic radiation pressure on a rigid sphere in a viscous fluid
,”
Proc. R. Soc. Lond. A
447
(
1931
),
447
466
(
1994
).
24.
M.
Settnes
and
H.
Bruus
, “
Forces acting on a small particle in an acoustical field in a viscous fluid
,”
Phys. Rev. E
85
,
016327
(
2012
).
25.
L.
Zhang
and
P.
Marston
, “
Acoustic radiation torque on small objects in viscous fluids and connection with viscous dissipation
,”
J. Acoust. Soc. Am.
136
,
2917
2921
(
2014
).
26.
T.
Baasch
,
A.
Pavlic
, and
J.
Dual
, “
Acoustic radiation force acting on a heavy particle in a standing wave can be dominated by the acoustic microstreaming
,”
Phys. Rev. E
100
,
061102
(
2019
).
27.
J. T.
Karlsen
and
H.
Bruus
, “
Forces acting on a small particle in an acoustical field in a thermoviscous fluid
,”
Phys. Rev. E
92
,
043010
(
2015
).
28.
Z.
Gong
and
M.
Baudoin
, “
Equivalence between angular spectrum-based and multipole expansion-based formulas of the acoustic radiation force and torque
,”
J. Acoust. Soc. Am.
149
,
3469
3482
(
2021
).
29.
P.
Glynne-Jones
,
P. P.
Mishra
,
R. J.
Boltryk
, and
M.
Hill
, “
Efficient finite element modeling of radiation forces on elastic particles of arbitrary size and geometry
,”
J. Acoust. Soc. Am.
133
(
4
),
1885
1893
(
2013
).
30.
A.
Garbin
,
I.
Leibacher
,
P.
Hahn
,
H. L.
Ferrand
,
A.
Studart
, and
J.
Dual
, “
Acoustophoresis of disk-shaped microparticles: A numerical and experimental study of acoustic radiation forces and torques
,”
J. Acoust. Soc. Am.
138
,
2759
2769
(
2015
).
31.
T.
Schwarz
,
P.
Hahn
,
G.
Petit-Pierre
, and
J.
Dual
, “
Rotation of fibers and other non-spherical particles by the acoustic radiation torque
,”
Microfluid Nanofluid
18
,
65
79
(
2015
).
32.
F. B.
Wijaya
and
K.-M.
Lim
, “
Numerical calculation of acoustic radiation force and torque acting on rigid non-spherical particles
,”
Acta Acust. united Ac.
101
,
531
542
(
2015
).
33.
W.
Wang
,
L. A.
Castro
,
M.
Hoyos
, and
T. E.
Mallouk
, “
Autonomous motion of metallic microrods propelled by ultrasound
,”
ACS Nano
6
,
6122
6132
(
2012
).
34.
L. P.
Gor'kov
, “
On the forces acting on a small particle in an acoustic field in an ideal fluid
,”
Sov. Phys.-Dokl
6
(
9
),
773
775
(
1962
).
35.
E. B.
Lima
,
J. P.
Leão-Neto
,
A. S.
Marques
,
G. C.
Silva
,
J. H.
Lopes
, and
G. T.
Silva
, “
Nonlinear interaction of acoustic waves with a spheroidal particle: Radiation force and torque effects
,”
Phys. Rev. Appl.
13
,
064048
(
2020
).
36.
L.
Zhang
and
P. L.
Marston
, “
Geometrical interpretation of negative radiation forces of acoustical Bessel beams on spheres
,”
Phys. Rev. E
84
,
035601
(
2011
).
37.
F. G.
Mitri
and
G. T.
Silva
, “
Generalization of the extended optical theorem for scalar arbitrary-shape acoustical beams in spherical coordinates
,”
Phys. Rev. E
90
(
5
),
053204
(
2014
).
38.
J. P.
Leão-Neto
,
J. H.
Lopes
, and
G. T.
Silva
, “
Scattering of a longitudinal Bessel beam by a sphere embedded in an isotropic elastic solid
,”
J. Acoust. Soc. Am.
142
(
5
),
2881
2889
(
2017
).
39.
J. H.
Lopes
,
J. P.
Leão-Neto
, and
G. T.
Silva
, “
Absorption, scattering, and radiation force efficiencies in the longitudinal wave scattering by a small viscoelastic particle in an isotropic solid
,”
J. Acoust. Soc. Am.
142
,
2866
2872
(
2017
).
40.
I. D.
Toftul
,
K. Y.
Bliokh
,
M. I.
Petrov
, and
F.
Nori
, “
Acoustic Radiation force and torque on small particles as measures of the canonical momentum and spin densities
,”
Phys. Rev. Lett.
123
,
183901
(
2019
).
41.
H.
Bruus
, “
Acoustofluidics 7: The acoustic radiation force on small particles
,”
Lab Chip
12
,
1014
1021
(
2012
).
42.
D.
Colton
and
R.
Kress
,
Inverse Acoustic and Electromagnetic Scattering Theory
, 2nd ed. (
Springer
,
Berlin
,
1998
).
43.
T.
Gupta
,
R.
Ghosh
, and
R.
Ganguly
, “
Acoustophoretic separation of infected erythrocytes from blood plasma in a microfluidic platform using biofunctionalized, matched-impedance layers
,”
Int. J. Numer. Method Biomed. Eng.
34
,
e2943
(
2018
).
44.
I.
Dulińska
,
M.
Targosz
,
W.
Strojny
,
M.
Lekka
,
P.
Czuba
,
W.
Balwierz
, and
M.
Szymoński
, “
Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy
,”
Biochem. Biophys. Methods
66
,
1
11
(
2006
).
45.
E.
Evans
and
Y. C.
Fung
, “
Improved measurements of the erythrocyte geometry
,”
Microvasc. Res.
4
(
4
),
335
347
(
1972
).
46.
COMSOL Inc.
, “
Plane wave scattering off a 2D axisymmetric object: Plane wave expansion approach
,” www.comsol.com/model/plane-wave-scattering-off-a-2d-axisymmetric-object-plane-wave-expansion-approach-51311 (Last viewed 11 July 2021).
47.
O.
Jakobsson
,
M.
Antfolk
, and
T.
Laurell
, “
Continuous flow two-dimensional acoustic orientation of nonspherical cells
,”
Anal. Chem.
86
,
6111
6114
(
2014
).
48.
T. S.
Jerome
and
M. F.
Hamilton
, “
Acoustic radiation force and torque on inhomogeneous particles in the Born approximation
,”
Proc. Mtgs. Acoust
39
,
045007
(
2019
).
You do not currently have access to this content.