The dynamical motion of a pair of microparticles exposed to acoustic standing waves and located at the pressure nodal plane is studied using numerical simulations and experiments. The insight into their dynamical behavior along the pressure nodal plane due to the competition between the axial primary radiation and interparticle forces is elucidated. An expression for axial primary radiation force acting on a particle is derived, and the particle dynamics is simulated using fluid-structure interaction model based on the arbitrary Lagrangian-Eulerian method. Considering the total radiation force acting on a particle is the sum of the axial primary radiation force and the interparticle force, three distinct dynamical regimes are observed depending upon the relative magnitudes of the acoustic forces which in turn depend on the gradient of the acoustic energy density. Acceleration, deceleration, and constant velocity motion of the pair of approaching particles are observed, which are explained by the interplay of the acoustic and non-acoustic forces. The dynamical motion of the pair of particles predicted using the model is in very good agreement with the experimental observations.

1.
Baasch
,
T.
, and
Dual
,
J.
(
2018
). “
Acoustofluidic particle dynamics: Beyond the Rayleigh limit
,”
J. Acoust. Soc. Am.
143
,
509
519
.
2.
Baasch
,
T.
,
Leibacher
,
I.
, and
Dual
,
J.
(
2017
). “
Multibody dynamics in acoustophoresis
,”
J. Acoust. Soc. Am.
141
,
1664
1674
.
3.
Barnkob
,
R.
,
Augustsson
,
P.
,
Laurell
,
T.
, and
Bruus
,
H.
(
2010
). “
Measuring the local pressure amplitude in microchannel acoustophoresis
,”
Lab. Chip.
10
,
563
570
.
4.
Bruus
,
H.
(
2012a
). “
Acoustofluidics 2: Perturbation theory and ultrasound resonance modes
,”
Lab. Chip.
12
,
20
28
.
5.
Bruus
,
H.
(
2012b
). “
Acoustofluidics 7: The acoustic radiation force on small particles
,”
Lab. Chip.
12
,
1014
1021
.
6.
Bruus
,
H.
(
2012c
). “
Acoustofluidics 10: Scaling laws in acoustophoresis
,”
Lab. Chip.
12
,
1578
1586
.
7.
de Gennes
,
P.-G.
,
Brochard-Wyart
,
F.
, and
Quéré
,
D.
(
2004
).
Capillarity and Wetting Phenomena
(
Springer
,
Springer UK
).
8.
Doinikov
,
A. A.
(
1994
). “
Acoustic radiation pressure on a compressible sphere in a viscous fluid
,”
J. Fluid Mech.
267
,
1
22
.
9.
Doinikov
,
A. A.
(
1999
). “
Bjerknes forces between two bubbles in a viscous fluid
,”
J. Acoust. Soc. Am.
106
,
3305
3312
.
10.
Donea
,
J.
,
Giuliani
,
S.
, and
Halleux
,
J. P.
(
1982
). “
An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions
,”
Comput. Methods Appl. Mech. Eng.
33
,
689
723
.
11.
Friend
,
J.
, and
Yeo
,
L. Y.
(
2011
). “
Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics
,”
Rev. Mod. Phys.
83
,
647
704
.
12.
Garcia-Sabaté
,
A.
,
Castro
,
A.
,
Hoyos
,
M.
, and
González-Cinca
,
R.
(
2014
). “
Experimental study on inter-particle acoustic forces
,”
J. Acoust. Soc. Am.
135
,
1056
1063
.
13.
Gor'kov
,
L. P.
(
1962
). “
On the forces acting acting on a small particle in an acoustic field in an ideal fluid
,”
Sov. Phys. Doklady
6
,
773
775
.
14.
Guazzelli
,
É.
, and
Morris
,
J.
(
2011
).
A Physical Introduction to Suspension Dynamics
(
Cambridge University Press
,
Cambridge, UK
).
15.
Habibi
,
R.
,
Devendran
,
C.
, and
Neild
,
A.
(
2017
). “
Trapping and patterning of large particles and cells in a 1D ultrasonic standing wave
,”
Lab. Chip.
17
,
3279
3290
.
16.
Hagsäter
,
S. M.
,
Lenshof
,
A.
,
Skafte-Pedersen
,
P.
,
Kutter
,
J. P.
,
Laurell
,
T.
, and
Bruus
,
H.
(
2008
). “
Acoustic resonances in straight micro channels: Beyond the 1D-approximation
,”
Lab. Chip.
8
,
1178
1184
.
17.
Hemachandran
,
E.
,
Karthick
,
S.
,
Laurell
,
T.
, and
Sen
,
A. K.
(
2019a
). “
Relocation of coflowing immiscible liquids under acoustic field in a microchannel
,”
Lett. J. Expl. Front. Phys.
125
,
54002
.
18.
Hemachandran
,
E.
,
Laurell
,
T.
, and
Sen
,
A. K.
(
2019b
). “
Continuous droplet coalescence in a microchannel coflow using bulk acoustic waves
,”
Phys. Rev. Appl.
12
,
044008
.
19.
Hoque
,
S. Z.
, and
Sen
,
A. K.
(
2020
). “
Interparticle acoustic radiation force between a pair of spherical particles in a liquid exposed to a standing bulk acoustic wave
,”
Phys. Fluids
32
,
072004
.
20.
Karlsen
,
J. T.
,
Augustsson
,
P.
, and
Bruus
,
H.
(
2016
). “
Acoustic force density acting on inhomogeneous fluids in acoustic fields
,”
Phys. Rev. Lett.
117
,
114504
.
21.
Karthick
,
S.
,
Pradeep
,
P. N.
,
Kanchana
,
P.
, and
Sen
,
A. K.
(
2018
). “
Acoustic impedance-based size-independent isolation of circulating tumour cells from blood using acoustophoresis
,”
Lab. Chip.
18
,
3802
3813
.
22.
Karthick
,
S.
, and
Sen
,
A. K.
(
2017
). “
Improved understanding of the acoustophoretic focusing of dense suspensions in a microchannel
,”
Phys. Rev. E
96
,
052606
.
23.
Karthick
,
S.
, and
Sen
,
A. K.
(
2018
). “
Improved understanding of acoustophoresis and development of an acoustofluidic device for blood plasma separation
,”
Phys. Rev. Appl.
10
,
034037
.
24.
King
,
L. V.
(
1934
). “
On the acoustic radiation pressure on spheres
,”
Proc. R. Soc. Lond. Ser. A.
147
,
212
240
.
25.
Lanoy
,
M.
,
Derec
,
C.
,
Tourin
,
A.
, and
Leroy
,
V.
(
2015
). “
Manipulating bubbles with secondary Bjerknes forces
,”
Appl. Phys. Lett.
107
,
214101
214105
.
26.
Laurell
,
T.
,
Petersson
,
F.
, and
Nilsson
,
A.
(
2007
). “
Chip integrated strategies for acoustic separation and manipulation of cells and particles
,”
Chem. Soc. Rev.
36
,
492
506
.
27.
Nath
,
A.
, and
Sen
,
A. K.
(
2019
). “
Acoustic behavior of a dense suspension in an inhomogeneous flow in a microchannel
,”
Phys. Rev. Appl.
12
,
054009
.
28.
Rajabi
,
M.
, and
Mojahed
,
A.
(
2018
). “
Acoustic active two body clusters
,”
J. Sound Vib.
429
,
34
44
.
29.
Saeidi
,
D.
,
Saghafian
,
M.
,
Haghjooy Javanmard
,
S.
,
Hammarström
,
B.
, and
Wiklund
,
M.
(
2019
). “
Acoustic dipole and monopole effects in solid particle interaction dynamics during acoustophoresis
,”
J. Acoust. Soc. Am.
145
,
3311
3319
.
30.
Sepehrirahnama
,
S.
,
Lim
,
K.-M.
, and
Chau
,
F. S.
(
2015
). “
Numerical study of interparticle radiation force acting on rigid spheres in a standing wave
,”
J. Acoust. Soc. Am.
137
,
2614
2622
.
31.
Silva
,
G. T.
(
2014
). “
Acoustic radiation force and torque on an absorbing compressible particle in an inviscid fluid
,”
J. Acoust. Soc. Am.
136
,
2405
2413
.
32.
Silva
,
G. T.
, and
Bruus
,
H.
(
2014
). “
Acoustic interaction forces between small particles in an ideal fluid
,”
Phys. Rev. E
90
,
1
11
.
33.
Van Assche
,
D.
,
Reithuber
,
E.
,
Qiu
,
W.
,
Laurell
,
T.
,
Henriques-Normark
,
B.
,
Mellroth
,
P.
,
Ohlsson
,
P.
, and
Augustsson
,
P.
(
2020
). “
Gradient acoustic focusing of sub-micron particles for separation of bacteria from blood lysate
,”
Sci. Rep.
10
,
1
13
.
34.
Wang
,
Q. X.
, and
Blake
,
J. R.
(
2011
). “
Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave
,”
J. Fluid Mech.
679
,
559
581
.
35.
Whitworth
,
G.
,
Grundy
,
M. A.
, and
Coakley
,
W. T.
(
1991
). “
Transport and harvesting of suspended particles using modulated ultrasound
,”
Ultrasonics
29
,
439
444
.
36.
Woodside
,
S. M.
,
Bowen
,
B. D.
, and
Piret
,
J. M.
(
1997
). “
Measurement of ultrasonic forces for particle-liquid separations
,”
AIChE J.
43
,
1727
1736
.
37.
Wu
,
J.
(
2018
). “
Acoustic streaming and its applications
,”
Fluids
3
,
108
118
.
38.
Wu
,
M.
,
Ozcelik
,
A.
,
Rufo
,
J.
,
Wang
,
Z.
,
Fang
,
R.
, and
Jun Huang
,
T.
(
2019
). “
Acoustofluidic separation of cells and particles
,”
Microsyst. Nanoeng.
5
,
32
.
39.
Xu
,
X.
,
Li
,
Z.
, and
Nehorai
,
A.
(
2013
). “
Finite element simulations of hydrodynamic trapping in microfluidic particle-trap array systems
,”
Biomicrofluidics
7
,
054108
.

Supplementary Material

You do not currently have access to this content.