The advantage of ultrasonic fields in harmless and label-free applications intrigued researchers to develop this technology. The capability of acoustofluidic technology for medical applications has not been thoroughly analyzed and visualized. Toward efficient design, in this research, flowing fluid in a microchannel excited by acoustic waves is fully investigated. To study the behavior of acoustic streaming, the main interfering parameters such as inlet velocity, working frequency, displacement amplitude, fluid buffer material, and hybrid effect in a rectangular water-filled microchannel actuated by standing surface acoustic waves are studied. Governing equations for acoustic field and laminar flow are derived employing perturbation theory. For each set of equations, appropriate boundary conditions are applied. Results demonstrate a parallel device is capable of increasing the inlet flow for rapid operations. Frequency increment raises the acoustic streaming velocity magnitude. Displacement amplitude amplification increases the acoustic streaming velocity and helps the streaming flow dominate over the incoming flow. The qualitative analysis of the hybrid effect shows using hard walls can significantly increase the streaming power without depleting excessive energy. A combination of several effective parameters provides an energy-efficient and fully controllable device for biomedical applications such as fluid mixing and cell lysis.

1.
Armani
,
D.
,
Liu
,
C.
, and
Aluru
,
N.
(
1999
). “
Re-configurable fluid circuits by PDMS elastomer micromachining
,” in
Twelfth IEEE International Conference on Micro Electro Mechanical Systems
, Cat. No. 99CH36291,
IEEE
, pp.
222
227
.
2.
Baasch
,
T.
, and
Dual
,
J.
(
2018
). “
Acoustofluidic particle dynamics: Beyond the Rayleigh limit
,”
J. Acoust. Soc. Am.
143
(
1
),
509
519
.
3.
Barnkob
,
R.
,
Nama
,
N.
,
Ren
,
L.
,
Huang
,
T. J.
,
Costanzo
,
F.
, and
Kähler
,
C. J.
(
2018
). “
Acoustically driven fluid and particle motion in confined and leaky systems
,”
Phys. Rev. Appl.
9
(
1
),
014027
.
4.
Bruus
,
H.
(
2008
).
Theoretical Microfluidics
(
Oxford University Press
,
Oxford
), Vol.
18
.
5.
Bruus
,
H.
(
2012
). “
Acoustofluidics 2: Perturbation theory and ultrasound resonance modes
,”
Lab Chip
12
(
1
),
20
28
.
6.
Cengel
,
Y. A.
, and
Boles
,
M. A.
(
2007
).
Thermodynamics: An Engineering Approach
, 6th ed. (
McGraw-Hill Companies
,
New York)
.
7.
Cheeke
,
J. D. N.
(
2017
).
Fundamentals and Applications of Ultrasonic Waves
(
CRC Press
,
Boca Raton
).
8.
Chen
,
C.
,
Zhang
,
S. P.
,
Mao
,
Z.
,
Nama
,
N.
,
Gu
,
Y.
,
Huang
,
P.-H.
,
Jing
,
Y.
,
Guo
,
X.
,
Costanzo
,
F.
, and
Huang
,
T. J.
(
2018
). “
Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics
,”
Lab Chip
18
(
23
),
3645
3654
.
9.
Collins
,
D. J.
,
Devendran
,
C.
,
Ma
,
Z.
,
Ng
,
J. W.
,
Neild
,
A.
, and
Ai
,
Y.
(
2016
). “
Acoustic tweezers via sub–time-of-flight regime surface acoustic waves
,”
Sci. Adv.
2
(
7
),
e1600089
.
10.
Connacher
,
W.
,
Zhang
,
N.
,
Huang
,
A.
,
Mei
,
J.
,
Zhang
,
S.
,
Gopesh
,
T.
, and
Friend
,
J.
(
2018
). “
Micro/nano acoustofluidics: Materials, phenomena, design, devices, and applications
,”
Lab Chip
18
(
14
),
1952
1996
.
11.
Darinskii
,
A.
,
Weihnacht
,
M.
, and
Schmidt
,
H.
(
2016
). “
Computation of the pressure field generated by surface acoustic waves in microchannels
,”
Lab Chip
16
(
14
),
2701
2709
.
12.
Das
,
P. K.
,
Snider
,
A. D.
, and
Bhethanabotla
,
V. R.
(
2019
). “
Acoustothermal heating in surface acoustic wave driven microchannel flow
,”
Phys. Fluids
31
(
10
),
106106
.
13.
Devendran
,
C.
,
Albrecht
,
T.
,
Brenker
,
J.
,
Alan
,
T.
, and
Neild
,
A.
(
2016
). “
The importance of travelling wave components in standing surface acoustic wave (SSAW) systems
,”
Lab Chip
16
(
19
),
3756
3766
.
14.
Di Carlo
,
D.
,
Irimia
,
D.
,
Tompkins
,
R. G.
, and
Toner
,
M.
(
2007
). “
Continuous inertial focusing, ordering, and separation of particles in microchannels
,”
Proc. Natl. Acad. Sci. USA
104
(
48
),
18892
18897
.
15.
Ding
,
X.
,
Li
,
P.
,
Lin
,
S.-C. S.
,
Stratton
,
Z. S.
,
Nama
,
N.
,
Guo
,
F.
,
Slotcavage
,
D.
,
Mao
,
X.
,
Shi
,
J.
,
Costanzo
,
F.
, and
Huang
,
T. J.
(
2013
). “
Surface acoustic wave microfluidics
,”
Lab Chip
13
(
18
),
3626
3649
.
16.
Ding
,
X.
,
Peng
,
Z.
,
Lin
,
S.-C. S.
,
Geri
,
M.
,
Li
,
S.
,
Li
,
P.
,
Chen
,
Y.
,
Dao
,
M.
,
Suresh
,
S.
, and
Huang
,
T. J.
(
2014
). “
Cell separation using tilted-angle standing surface acoustic waves
,”
Proc. Natl. Acad. Sci. USA
111
(
36
),
12992
12997
.
17.
Franke
,
T.
,
Braunmüller
,
S.
,
Schmid
,
L.
,
Wixforth
,
A.
, and
Weitz
,
D.
(
2010
). “
Surface acoustic wave actuated cell sorting (SAWACS)
,”
Lab Chip
10
(
6
),
789
794
.
18.
Guo
,
F.
,
Mao
,
Z.
,
Chen
,
Y.
,
Xie
,
Z.
,
Lata
,
J. P.
,
Li
,
P.
,
Ren
,
L.
,
Liu
,
J.
,
Yang
,
J.
,
Dao
,
M.
,
Suresh
,
S.
, and
Huang
,
T. J.
(
2016
). “
Three-dimensional manipulation of single cells using surface acoustic waves
,”
Proc. Natl. Acad. Sci. USA
113
(
6
),
1522
1527
.
19.
Guo
,
J.
,
Kang
,
Y.
, and
Ai
,
Y.
(
2015
). “
Radiation dominated acoustophoresis driven by surface acoustic waves
,”
J. Coll. Interface Sci.
455
,
203
211
.
20.
Haynes
,
W. M.
(
2014
).
CRC Handbook of Chemistry and Physics
(
CRC Press
,
Boca Raton
).
21.
Hsu
,
J.-C.
, and
Chao
,
C.-L.
(
2020
). “
Full-wave modeling of micro-acoustofluidic devices driven by standing surface acoustic waves for microparticle acoustophoresis
,”
J. Appl. Phys.
128
(
12
),
124502
.
22.
Ibsen
,
S. D.
,
Wright
,
J.
,
Lewis
,
J. M.
,
Kim
,
S.
,
Ko
,
S.-Y.
,
Ong
,
J.
,
Manouchehri
,
S.
,
Vyas
,
A.
,
Akers
,
J.
,
Chen
,
C. C.
,
Carter
,
B. S.
,
Esener
,
S. C.
, and
Heller
,
M. J.
(
2017
). “
Rapid isolation and detection of exosomes and associated biomarkers from plasma
,”
ACS Nano
11
(
7
),
6641
6651
.
23.
Inglis
,
D. W.
,
Davis
,
J. A.
,
Austin
,
R. H.
, and
Sturm
,
J. C.
(
2006
). “
Critical particle size for fractionation by deterministic lateral displacement
,”
Lab Chip
6
(
5
),
655
658
.
24.
Jonáš
,
A.
, and
Zemanek
,
P.
(
2008
). “
Light at work: The use of optical forces for particle manipulation, sorting, and analysis
,”
Electrophoresis
29
(
24
),
4813
4851
.
25.
Kiebert
,
F.
,
Wege
,
S.
,
Massing
,
J.
,
König
,
J.
,
Cierpka
,
C.
,
Weser
,
R.
, and
Schmidt
,
H.
(
2017
). “
3D measurement and simulation of surface acoustic wave driven fluid motion: A comparison
,”
Lab Chip
17
(
12
),
2104
2114
.
26.
Köster
,
D.
(
2006
). “
Numerical simulation of acoustic streaming on saw-driven biochips
,”
SIAM J. Sci. Comput.
29
(
6
),
2352
2380
.
27.
Li
,
L-q.
,
Jia
,
K.
,
Wu
,
E-y.
,
Zhu
,
Y-j.
, and
Yang
,
K-j.
(
2020
). “
Design of acoustofluidic device for localized trapping
,”
Biomicrofluidics
14
(
3
),
034107
.
28.
Liu
,
S.
,
Xu
,
G.
,
Ni
,
Z.
,
Guo
,
X.
,
Luo
,
L.
,
Tu
,
J.
, and
Zhang
,
D.
(
2017
). “
Quantitative assessment of acoustic pressure in one-dimensional acoustofluidic devices driven by standing surface acoustic waves
,”
Appl. Phys. Lett.
111
(
4
),
043508
.
29.
Miansari
,
M.
, and
Friend
,
J. R.
(
2016
). “
Acoustic nanofluidics via room-temperature lithium niobate bonding: A platform for actuation and manipulation of nanoconfined fluids and particles
,”
Adv. Funct. Mater.
26
(
43
),
7861
7872
.
30.
Muller
,
P. B.
,
Barnkob
,
R.
,
Jensen
,
M. J. H.
, and
Bruus
,
H.
(
2012
). “
A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces
,”
Lab Chip
12
(
22
),
4617
4627
.
31.
Nama
,
N.
,
Barnkob
,
R.
,
Mao
,
Z.
,
Kähler
,
C. J.
,
Costanzo
,
F.
, and
Huang
,
T. J.
(
2015
). “
Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves
,”
Lab Chip
15
(
12
),
2700
2709
.
32.
Nasiri
,
R.
,
Shamloo
,
A.
,
Ahadian
,
S.
,
Amirifar
,
L.
,
Akbari
,
J.
,
Goudie
,
M. J.
,
Lee
,
K.
,
Ashammakhi
,
N.
,
Dokmeci
,
M. R.
,
Di Carlo
,
D.
, and
Khademhosseini
,
A.
(
2020
). “
Microfluidic-based approaches in targeted cell/particle separation based on physical properties: Fundamentals and applications
,”
Small
16
,
2000171
.
33.
Nazarzadeh
,
E.
,
Wilson
,
R.
,
King
,
X.
,
Reboud
,
J.
,
Tassieri
,
M.
, and
Cooper
,
J. M.
(
2017
). “
Confinement of surface waves at the air-water interface to control aerosol size and dispersity
,”
Phys. Fluids
29
(
11
),
112105
.
34.
Ni
,
Z.
,
Yin
,
C.
,
Xu
,
G.
,
Xie
,
L.
,
Huang
,
J.
,
Liu
,
S.
,
Tu
,
J.
,
Guo
,
X.
, and
Zhang
,
D.
(
2019
). “
Modelling of SAW-PDMS acoustofluidics: Physical fields and particle motions influenced by different descriptions of the PDMS domain
,”
Lab Chip
19
(
16
),
2728
2740
.
35.
Nyborg
,
W. L.
(
1953
). “
Acoustic streaming due to attenuated plane waves
,”
J. Acoust. Soc. Am.
25
(
1
),
68
75
.
36.
Qi
,
A.
,
Yeo
,
L. Y.
, and
Friend
,
J. R.
(
2008
). “
Interfacial destabilization and atomization driven by surface acoustic waves
,”
Phys. Fluids
20
(
7
),
074103
.
37.
Richard
,
C.
,
Fakhfouri
,
A.
,
Colditz
,
M.
,
Striggow
,
F.
,
Kronstein-Wiedemann
,
R.
,
Tonn
,
T.
,
Medina-Sánchez
,
M.
,
Schmidt
,
O. G.
,
Gemming
,
T.
, and
Winkler
,
A.
(
2019
). “
Blood platelet enrichment in mass-producible surface acoustic wave (SAW) driven microfluidic chips
,”
Lab Chip
19
(
24
),
4043
4051
.
38.
Russom
,
A.
,
Gupta
,
A. K.
,
Nagrath
,
S.
,
Di Carlo
,
D.
,
Edd
,
J. F.
, and
Toner
,
M.
(
2009
). “
Differential inertial focusing of particles in curved low-aspect-ratio microchannels
,”
New J. Phys.
11
(
7
),
075025
.
39.
Sankaranarayanan
,
S. K.
, and
Bhethanabotla
,
V. R.
(
2009
). “
Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
56
(
3
),
631
643
.
40.
Schmid
,
L.
,
Wixforth
,
A.
,
Weitz
,
D. A.
, and
Franke
,
T.
(
2012
). “
Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber
,”
Microfluid. Nanofluid.
12
(
1-4
),
229
235
.
41.
Shi
,
J.
,
Mao
,
X.
,
Ahmed
,
D.
,
Colletti
,
A.
, and
Huang
,
T. J.
(
2008
). “
Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW)
,”
Lab Chip
8
(
2
),
221
223
.
42.
Shi
,
X.
,
Martin
,
R. W.
,
Vaezy
,
S.
, and
Crum
,
L. A.
(
2002
). “
Quantitative investigation of acoustic streaming in blood
,”
J. Acoust. Soc. Am.
111
(
2
),
1110
1121
.
43.
Shilton
,
R.
,
Tan
,
M. K.
,
Yeo
,
L. Y.
, and
Friend
,
J. R.
(
2008
). “
Particle concentration and mixing in microdrops driven by focused surface acoustic waves
,”
J. Appl. Phys.
104
(
1
),
014910
.
44.
Skov
,
N. R.
, and
Bruus
,
H.
(
2016
). “
Modeling of microdevices for saw-based acoustophoresis—A study of boundary conditions
,”
Micromachines
7
(
10
),
182
.
45.
Skov
,
N. R.
,
Sehgal
,
P.
,
Kirby
,
B. J.
, and
Bruus
,
H.
(
2019
). “
Three-dimensional numerical modeling of surface-acoustic-wave devices: Acoustophoresis of micro-and nanoparticles including streaming
,”
Phys. Rev. Appl.
12
(
4
),
044028
.
46.
Tahmasebipour
,
A.
,
Friedrich
,
L.
,
Begley
,
M.
,
Bruus
,
H.
, and
Meinhart
,
C.
(
2020
). “
Toward optimal acoustophoretic microparticle manipulation by exploiting asymmetry
,”
J. Acoust. Soc. Am.
148
(
1
),
359
373
.
47.
Tan
,
M. K.
,
Yeo
,
L.
, and
Friend
,
J.
(
2009a
). “
Rapid fluid flow and mixing induced in microchannels using surface acoustic waves
,”
Europhys. Lett.
87
(
4
),
47003
.
48.
Tan
,
M. K.
,
Yeo
,
L. L.
, and
Friend
,
J. R.
(
2009b
). “
Inducing rapid fluid flows in microchannels with surface acoustic waves
,” in
2009 IEEE International Ultrasonics Symposium
,
IEEE
, pp.
609
612
.
49.
Tan
,
M. K.
,
Yeo
,
L. Y.
, and
Friend
,
J. R.
(
2010
). “
Unique flow transitions and particle collection switching phenomena in a microchannel induced by surface acoustic waves
,”
Appl. Phys. Lett.
97
(
23
),
234106
.
50.
Tsou
,
J. K.
,
Liu
,
J.
,
Barakat
,
A. I.
, and
Insana
,
M. F.
(
2008
). “
Role of ultrasonic shear rate estimation errors in assessing inflammatory response and vascular risk
,”
Ultrasound Med. Biol.
34
(
6
),
963
972
.
51.
Ung
,
W.
,
Mutafopulos
,
K.
,
Spink
,
P.
,
Rambach
,
R.
,
Franke
,
T.
, and
Weitz
,
D.
(
2017
). “
Enhanced surface acoustic wave cell sorting by 3D microfluidic-chip design
,”
Lab Chip
17
(
23
),
4059
4069
.
52.
Velev
,
O. D.
, and
Bhatt
,
K. H.
(
2006
). “
On-chip micromanipulation and assembly of colloidal particles by electric fields
,”
Soft Matter
2
(
9
),
738
750
.
53.
Wang
,
Z.
,
Huang
,
P.-H.
,
Chen
,
C.
,
Bachman
,
H.
,
Zhao
,
S.
,
Yang
,
S.
, and
Huang
,
T. J.
(
2019
). “
Cell lysis via acoustically oscillating sharp edges
,”
Lab Chip
19
(
24
),
4021
4032
.
54.
Westerhausen
,
C.
,
Schnitzler
,
L. G.
,
Wendel
,
D.
,
Krzysztoń
,
R.
,
Lächelt
,
U.
,
Wagner
,
E.
,
Rädler
,
J. O.
, and
Wixforth
,
A.
(
2016
). “
Controllable acoustic mixing of fluids in microchannels for the fabrication of therapeutic nanoparticles
,”
Micromachines
7
(
9
),
150
.
55.
Wong
,
K.-K.
(
2002
).
Properties of Lithium Niobate
, EMIS Datareviews Series, No. 28 (
Institution of Electrical Engineers
,
London
).
56.
Wu
,
M.
,
Chen
,
C.
,
Wang
,
Z.
,
Bachman
,
H.
,
Ouyang
,
Y.
,
Huang
,
P.-H.
,
Sadovsky
,
Y.
, and
Huang
,
T. J.
(
2019
). “
Separating extracellular vesicles and lipoproteins via acoustofluidics
,”
Lab a Chip
19
(
7
),
1174
1182
.
57.
Wu
,
M.
,
Huang
,
P.-H.
,
Zhang
,
R.
,
Mao
,
Z.
,
Chen
,
C.
,
Kemeny
,
G.
,
Li
,
P.
,
Lee
,
A. V.
,
Gyanchandani
,
R.
,
Armstrong
,
A. J.
,
Dao
,
M.
,
Suresh
,
S.
, and
Huang
,
T. J.
(
2018
). “
Circulating tumor cell phenotyping via high-throughput acoustic separation
,”
Small
14
(
32
),
1801131
.
58.
Xie
,
H.
, and
Zhang
,
Y.
(
2017
). “
The effect of red blood cells on blood heat transfer
,”
Int. J. Heat Mass Trans.
113
,
840
849
.
59.
Yamada
,
M.
,
Kano
,
K.
,
Tsuda
,
Y.
,
Kobayashi
,
J.
,
Yamato
,
M.
,
Seki
,
M.
, and
Okano
,
T.
(
2007
). “
Microfluidic devices for size-dependent separation of liver cells
,”
Biomed. Microdev.
9
(
5
),
637
645
.
60.
Yeo
,
L. Y.
, and
Friend
,
J. R.
(
2014
). “
Surface acoustic wave microfluidics
,”
Annu. Rev. Fluid Mech.
46
,
379
406
.
61.
Zborowski
,
M.
, and
Chalmers
,
J. J.
(
2011
). “
Rare cell separation and analysis by magnetic sorting
,”
Anal. Chem.
83
,
8050
8056
.

Supplementary Material

You do not currently have access to this content.