Fault identification using the emitted mechanical noise is becoming an attractive field of research in a variety of industries. It is essential to rank acoustic feature integration functions on their efficiency to classify different types of sound for conducting a fault diagnosis. The Mel frequency cepstral coefficient (MFCC) method was used to obtain various acoustic feature sets in the current study. MFCCs represent the audio signal power spectrum and capture the timbral information of sounds. The objective of this study is to introduce a method for the selection of statistical indicators to integrate the MFCC feature sets. Two purpose-built audio datasets for squeak and rattle were created for the study. Data were collected experimentally to investigate the feature sets of 256 recordings from 8 different rattle classes and 144 recordings from 12 different squeak classes. The support vector machine method was used to evaluate the classifier accuracy with individual feature sets. The outcome of this study shows the best performing statistical feature sets for the squeak and rattle audio datasets. The method discussed in this pilot study is to be adapted to the development of a vehicle faulty sound recognition algorithm.

1.
Adavanne
,
S.
,
Politis
,
A.
,
Nikunen
,
J.
, and
Virtanen
,
T.
(
2019
). “
Sound event localization and detection of overlapping sources using convolutional recurrent neural networks
,”
IEEE J. Sel. Top. Signal Process.
13
,
34
48
.
2.
Akpudo
,
U. E.
, and
Hur
,
J.-W.
(
2021
). “
A cost-efficient MFCC-based fault detection and isolation technology for electromagnetic pumps
,”
Electronics
10
,
439
.
3.
Bianco
,
M. J.
,
Gerstoft
,
P.
,
Traer
,
J.
,
Ozanich
,
E.
,
Roch
,
M. A.
,
Gannot
,
S.
, and
Deledalle
,
C. A.
(
2019
). “
Machine learning in acoustics: Theory and applications
,”
J. Acoust. Soc. Am.
146
,
3590
3628
.
4.
Bountourakis
,
V.
,
Vrysis
,
L.
,
Konstantoudakis
,
K.
, and
Vryzas
,
N.
(
2019
). “
An enhanced temporal feature integration method for environmental sound recognition
,”
Acoustics
1
,
410
422
.
5.
Cao
,
X.
,
Wang
,
Y.
,
Chen
,
B.
, and
Zeng
,
N.
(
2021
). “
Domain-adaptive intelligence for fault diagnosis based on deep transfer learning from scientific test rigs to industrial applications
,”
Neural Comput. Appl.
33
,
4483
4499
.
6.
Chachada
,
S.
, and
Kuo
,
C. C. J.
(
2014
). “
Environmental sound recognition: A survey
,”
APSIPA Trans. Signal Inf. Process.
3
,
e14
.
7.
Chandrika
,
U. K.
, and
Kim
,
J. H.
(
2010
). “
Development of an algorithm for automatic detection and rating of squeak and rattle events
,”
J. Sound Vib.
329
,
4567
4577
.
8.
Choi
,
K.
,
Fazekas
,
G.
, and
Sandler
,
M.
(
2016
). “
Automatic tagging using deep convolutional neural networks
,” arXiv:1606.00298.
9.
Cortes
,
C.
, and
Vapnik
,
V.
(
1995
). “
Support-vector networks
,”
Mach. Learn.
20
,
273
297
.
10.
Dunnett
,
C. W.
(
1964
). “
New tables for multiple comparisons with a control
,”
Biometrics
20
,
482
491
.
11.
Genuit
,
K.
(
2004
). “
The sound quality of vehicle interior noise: A challenge for the NVH-engineers
,”
Int. J. Veh. Noise Vib.
1
,
158
168
.
12.
Hossain
,
M. S.
, and
Muhammad
,
G.
(
2018
). “
Environment classification for urban big data using deep learning
,”
IEEE Commun. Mag.
56
,
44
50
.
13.
Huang
,
H. B.
,
Li
,
R. X.
,
Huang
,
X. R.
,
Lim
,
T. C.
, and
Ding
,
W. P.
(
2016
). “
Identification of vehicle suspension shock absorber squeak and rattle noise based on wavelet packet transforms and a genetic algorithm-support vector machine
,”
Appl. Acoust.
113
,
137
148
.
14.
Jing
,
L.
,
Zhao
,
M.
,
Li
,
P.
, and
Xu
,
X.
(
2017
). “
A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox
,”
Measurement
111
,
1
10
.
15.
Jung
,
I.-J.
(
2018
). “
Localization of BSR Noise source using the improved 3D intensity method
,” in SAE Technical Paper 2018-01-1530, SAE International, United States.
16.
Kane
,
P. V.
, and
Andhare
,
A.
(
2019
). “
End of the assembly line gearbox fault inspection using artificial neural network and support vector machines
,”
Int. J. Acoust. Vib.
24
,
68
84
.
17.
Lee
,
G. J.
,
Kim
,
K.
, and
Kim
,
J.
(
2015
). “
Development of an algorithm to automatically detect and distinguish squeak and rattle noises
,” " in SAE Technical Paper 2015-01-2258, SAE International, United States.
18.
Lee
,
S.-K.
,
Kim
,
B.-S.
, and
Park
,
D.-C.
(
2005
). “
Objective evaluation of the rumbling sound in passenger cars based on an artificial neural network
,”
Proc. Inst. Mech. Eng.
219
(4),
457
469
.
19.
Liu
,
R.
,
Yang
,
B.
,
Zio
,
E.
, and
Chen
,
X.
(
2018
). “
Artificial intelligence for fault diagnosis of rotating machinery: A review
,”
Mech. Syst. Signal Process.
108
,
33
47
.
20.
Mitrović
,
D.
,
Zeppelzauer
,
M.
, and
Breiteneder
,
C.
(
2010
). “
Features for content-based audio retrieval
,” in
Advances in Computers: Improving the Web
(
Elsevier
,
Burlington
), Vol.
78
, pp.
71
150
.
21.
Niessen
,
M. E.
,
Van Kasteren
,
T. L.
, and
Merentitis
,
A.
(
2013
). “
Hierarchical modeling using automated sub-clustering for sound event recognition
,” in
2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
(
IEEE
,
New York
), pp.
1
4
.
22.
Nopiah
,
Z. M.
,
Junoh
,
A. K.
, and
Ariffin
,
A. K.
(
2015
). “
Vehicle interior noise and vibration level assessment through the data clustering and hybrid classification model
,”
Appl. Acoust.
87
,
9
22
.
23.
Padmanabhan
,
J.
, and
Johnson Premkumar
,
M. J.
(
2015
). “
Machine learning in automatic speech recognition: A survey
,”
IETE Tech. Rev.
32
,
240
251
.
24.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
, and
Dubourg
,
V.
(
2011
). “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
.
25.
Piczak
,
K. J.
(
2015
). “
Environmental sound classification with convolutional neural networks
,” in
2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP)
, pp.
1
6
.
26.
Poddar
,
S.
, and
Tandon
,
N.
(
2016
). “
Characteristics of acoustic emission signal for fault diagnosis of journal bearing
,” in
International Conference on Condition Monitoring
(
GITAM University and Condition Monitoring Society of India
, Elsevier Science B.V., Amsterdam), pp.
108
-
112
.
27.
Pogorilyi
,
O.
,
Fard
,
M.
, and
Davy
,
J.
(
2020a
). “
Squeak and rattle noise classification using radial basis function neural networks
,”
Noise Control Eng. J.
68
,
283
293
.
28.
Pogorilyi
,
O.
,
Fard
,
M.
, and
Stolar
,
M.
(
2017
). “
Application of sound recognition techniques for identification of the squeak and rattle noises
,” in
INTER-NOISE and NOISE-CON Congress and Conference Proceedings,
pp.
204
209
.
29.
Pogorilyi
,
O.
,
Fard
,
M.
,
Taylor
,
D.
, and
Davy
,
J.
(
2020b
). “
Landmark-based audio fingerprinting system applied to vehicle squeak and rattle noises
,”
Noise Control Eng. J.
68
,
113
124
.
30.
Purwins
,
H.
,
Li
,
B.
,
Virtanen
,
T.
,
Schlüter
,
J.
,
Chang
,
S.-Y.
, and
Sainath
,
T.
(
2019
). “
Deep learning for audio signal processing
,”
IEEE J. Sel. Top. Signal Process.
13
,
206
219
.
31.
Schröder
,
J.
,
Goetze
,
S.
, and
Anemüller
,
J.
(
2015
). “
Spectro-temporal Gabor filterbank features for acoustic event detection
,”
IEEE/ACM Trans. Audio, Speech, Lang. Process.
23
,
2198
2208
.
32.
Shin
,
S.-H.
, and
Cheong
,
C.
(
2010
). “
Experimental characterization of instrument panel buzz, squeak, and rattle (BSR) in a vehicle
,”
Appl. Acoust.
71
,
1162
1168
.
33.
Tiwari
,
S.
,
Sapra
,
V.
, and
Jain
,
A.
(
2020
). “
6—Heartbeat sound classification using Mel-frequency cepstral coefficients and deep convolutional neural network
,” in
Advances in Computational Techniques for Biomedical Image Analysis
, edited by
D.
Koundal
and
S.
Gupta
(
Academic
,
New York
), pp.
115
131
.
34.
Vaiciukynas
,
E.
,
Verikas
,
A.
,
Gelzinis
,
A.
,
Bacauskiene
,
M.
,
Kons
,
Z.
,
Satt
,
A.
, and
Hoory
,
R.
(
2014
). “
Fusion of voice signal information for detection of mild laryngeal pathology
,”
Appl. Soft Comput.
18
,
91
103
.
35.
Watkins
,
S. E.
,
Akhavan
,
F.
,
Dua
,
R.
,
Chandrashekhara
,
K.
, and
Wunsch
,
D. C.
(
2007
). “
Impact-induced damage characterization of composite plates using neural networks
,”
Smart Mater. Struct.
16
,
515
524
.
36.
Zhang
,
D.
,
Stewart
,
E.
,
Entezami
,
M.
,
Roberts
,
C.
, and
Yu
,
D.
(
2020
). “
Intelligent acoustic-based fault diagnosis of roller bearings using a deep graph convolutional network
,”
Measurement
156
,
107585
.
37.
Zhang
,
X.
,
Chen
,
Y.
, and
Tang
,
G.
(
2019
). “
Audio-based classification of automobile driving conditions
,” in
Proceedings of the 2019 International Conference on Artificial Intelligence and Computer Science
(
ACM
,
Wuhan, Hubei, China
), pp.
808
811
.
38.
Zhou
,
B.
,
Khosla
,
A.
,
Lapedriza
,
A.
,
Oliva
,
A.
, and
Torralba
,
A.
(
2016
). “
Learning deep features for discriminative localization
,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp.
2921
2929
.
You do not currently have access to this content.