Dynamic directivity is a specific characteristic of the human voice, showing time-dependent variations while speaking or singing. To study and model the human voice's articulation-dependencies and provide datasets that can be applied in virtual acoustic environments, full-spherical voice directivity measurements were carried out for 13 persons while articulating eight phonemes. Since it is nearly impossible for subjects to repeat exactly the same articulation numerous times, the sound radiation was captured simultaneously using a surrounding spherical microphone array with 32 microphones and then subsequently spatially upsampled to a dense sampling grid. Based on these dense directivity patterns, the spherical voice directivity was studied for different phonemes, and phoneme-dependent variations were analyzed. The differences between the phonemes can, to some extent, be explained by articulation-dependent properties, e.g., the mouth opening size. The directivity index, averaged across all subjects, varied by a maximum of 3 dB between any of the vowels or fricatives, and statistical analysis showed that these phoneme-dependent differences are significant.

1.
Ahrens
,
J.
, and
Bilbao
,
S.
(
2021
). “
Computation of spherical harmonic representations of source directivity based on the finite-distance signature
,”
IEEE/ACM Trans. Audio Speech Language Process.
29
,
83
92
.
2.
Algazi
,
V. R.
,
Duda
,
R. O.
, and
Avendano
,
C.
(
2001
). “
Estimation of a spherical-head model from anthropometry
,”
J. Audio Eng. Soc.
49
(
6
),
472
479
.
3.
Arend
,
J. M.
,
Lübeck
,
T.
, and
Pörschmann
,
C.
(
2019
). “
A reactive virtual acoustic environment for interactive immersive audio
,” in
Proceedings of the 2019 AES Conference on Immersive and Interactive Audio
, March 27–29, York, UK.
4.
Arend
,
J. M.
,
Stade
,
P.
, and
Pörschmann
,
C.
(
2017
). “
Binaural reproduction of self-generated sound in virtual acoustic environments
,”
Proc. Mtgs. Acoust.
30
,
015007
.
5.
Arend
,
J. M.
, and
Pörschmann
,
C.
(
2019
). “
SUpDEq—Spatial upsampling by directional equalization
,” https://github.com/AudioGroupCologne/SUpDEq (Last viewed June 18, 2021).
6.
Ben Hagai
,
I.
,
Pollow
,
M.
,
Vorländer
,
M.
, and
Rafaely
,
B.
(
2011
). “
Acoustic centering of sources measured by surrounding spherical microphone arrays
,”
J. Acoust. Soc. Am.
130
(
4
),
2003
2015
.
7.
Blandin
,
R.
,
Hirtum
,
A. V.
, and
Laboissière
,
R.
(
2016
). “
Influence of higher order acoustical propagation modes on variable section waveguide directivity: Application to vowel [A]
,”
Acta Acust. united Acust.
102
,
918
929
.
8.
Blandin
,
R.
,
Hirtum
,
A. V.
,
Pelorson
,
X.
, and
Laboissière
,
R.
(
2018
). “
The effect on vowel directivity patterns of higher order propagation modes
,”
J. Sound Vib.
432
,
621
632
.
9.
Brandner
,
M.
,
Blandin
,
R.
,
Frank
,
M.
, and
Sontacchi
,
A.
(
2020
). “
A pilot study on the influence of mouth configuration and torso on singing voice directivity A pilot study on the influence of mouth configuration and torso on singing voice directivity
,”
J. Acoust. Soc. Am.
148
(
3
),
1169
1180
.
10.
Cabrera
,
D.
,
Davis
,
P. J.
, and
Connolly
,
A.
(
2011
). “
Long-term horizontal vocal directivity of opera singers: Effects of singing projection and acoustic environment
,”
J. Voice
25
(
6
),
e291
e303
.
11.
Chu
,
W. T.
, and
Warnock
,
A. C. C.
(
2002
).
Detailed Directivity of Sound Fields Around Human Talkers
, Technical Report (
National Research Council Canada
,
Ottawa, Canada
).
12.
Dunn
,
H. K.
, and
Farnsworth
,
D. W.
(
1939
). “
Exploration of pressure field around the human head during speech
,”
J. Acoust. Soc. Am.
10
,
184
199
.
13.
Ehret
,
J.
,
Stienen
,
J.
,
Brozdowski
,
C.
,
Bönsch
,
A.
,
Mittelberg
,
I.
, and
Vorländer
,
M.
(
2020
). “
Evaluating the influence of phoneme-dependent dynamic speaker directivity of embodied conversational agents' speech
,” in
Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents
, October 20–22.
14.
Frank
,
M.
, and
Brandner
,
M.
(
2019
). “
Perceptual evaluation of spatial resolution in directivity patterns
,” in
Proceedings of the 45th DAGA Congress
, March 18–21, Rostock, Germany, pp.
74
77
.
15.
Greenhouse
,
S. W.
, and
Geisser
,
S.
(
1959
). “
On methods in the analysis of profile data
,”
Psychometrika
24
(
2
),
95
112
.
16.
Henry
,
J.
(
1857
).
Annual Report of the Board of Regents of the Smithsonian Institution
(
Smithsonian Institution
,
Washington, DC
).
17.
Hochberg
,
Y.
(
1988
). “
A sharper Bonferroni procedure for multiple tests of significance
,”
Biometrika
75
(
4
),
800
802
.
18.
Katz
,
B.
, and
D'Alessandro
,
C.
(
2007
). “
Directivity measurements of the singing voice
,” in
Proceedings of the 19th International Congress on Acoustics
, September 2–7, Madrid, Spain.
19.
Kob
,
M.
, and
Jers
,
H.
(
1999
). “
Directivity measurement of a singer
,”
J. Acoust. Soc. Am.
105
,
1003
.
20.
Kocon
,
P.
, and
Monson
,
B. B.
(
2018
). “
Horizontal directivity patterns differ between vowels extracted from running speech
,”
J. Acoust. Soc. Am.
144
(
1
),
EL7
EL12
.
21.
Larsen
,
E.
,
Iyer
,
N.
,
Lansing
,
C. R.
, and
Feng
,
A. S.
(
2008
). “
On the minimum audible difference in direct-to-reverberant energy ratio
,”
J. Acoust. Soc. Am.
124
(
1
),
450
461
.
22.
Leishman
,
T. W.
,
Bellows
,
S. D.
,
Pincock
,
C. M.
, and
Whiting
,
J. K.
(
2021
). “
High-resolution spherical directivity of live speech from a multiple-capture transfer function method
,”
J. Acoust. Soc. Am.
149
(
3
),
1507
1523
.
23.
Long
,
M.
(
2014
).
Architectural Acoustics
(
Elsevier
,
Amsterdam
).
24.
Marshall
,
A. H.
, and
Meyer
,
J.
(
1985
). “
The directivity and auditory impressions of singers
,”
Acustica
58
,
130
140
.
25.
Monson
,
B. B.
,
Hunter
,
E. J.
, and
Story
,
B. H.
(
2012
). “
Horizontal directivity of low- and high-frequency energy in speech and singing
,”
J. Acoust. Soc. Am.
132
(
1
),
433
441
.
26.
Moreno
,
A.
, and
Pfretzschner
,
J.
(
1978
). “
Human head directivity in speech emission: A new approach
,”
Acoust. Lett.
1
,
78
84
.
27.
Pollow
,
M.
(
2015
).
Directivity Patterns for Room Acoustical Measurements and Simulations
(
Logos Verlag
,
Berlin
), pp.
1
176
.
28.
Pörschmann
,
C.
, and
Arend
,
J. M.
(
2019a
). “
A method for spatial upsampling of directivity patterns of human speakers by directional equalization
,” in
Proceedings of the 45th DAGA Congress
, March 18–21, Rostock, Germany, pp.
1458
1461
.
29.
Pörschmann
,
C.
, and
Arend
,
J. M.
(
2019b
). “
How positioning inaccuracies influence the spatial upsampling of sparse head-related transfer function sets
,” in
Proceedings of the International Conference on Spatial Audio—ICSA 2019
, September 26–28, Ilmenau, Germany, pp.
1
8
.
30.
Pörschmann
,
C.
, and
Arend
,
J. M.
(
2020a
). “
A method for spatial upsampling of voice directivity by directional equalization
,”
J. Audio Eng. Soc.
68
(
9
),
649
663
.
31.
Pörschmann
,
C.
, and
Arend
,
J. M.
(
2020b
). “
Analyzing the directivity patterns of human speakers
,” in
Proceedings of the 46th DAGA Congress
, pp.
1141
1144
.
32.
Pörschmann
,
C.
, and
Arend
,
J. M.
(
2021
). “
Supplementary material for ‘Investigating phoneme-dependencies of spherical voice directivity patterns’
” [Data set],
J. Acoust. Soc. Am.
(Last viewed June 18, 2021).
33.
Pörschmann
,
C.
,
Arend
,
J. M.
, and
Brinkmann
,
F.
(
2019
). “
Directional equalization of sparse head-related transfer function sets for spatial upsampling
,”
IEEE/ACM Trans. Audio Speech Language Process.
27
(
6
),
1060
1071
.
34.
Postma
,
B. N. J.
,
Demontis
,
H.
, and
Katz
,
B. F. G.
(
2017
). “
Subjective evaluation of dynamic voice directivity for auralizations
,”
Acta Acust. united Acust.
103
(
2
),
181
184
.
35.
Postma
,
B. N. J.
,
Jouan
,
S.
, and
Katz
,
B. F. G.
(
2018
). “
Pre-Sabine room acoustic design guidelines based on human voice directivity
,”
J. Acoust. Soc. Am.
143
(
4
),
2428
2437
.
36.
Postma
,
B. N. J.
, and
Katz
,
B. F.
(
2016
). “
Dynamic voice directivity in room acoustic auralizations
,” in
Proceedings of the 42nd DAGA Congress
, March 14–17, Aachen, Germany, pp.
352
355
.
37.
Rafaely
,
B.
(
2015
).
Fundamentals of Spherical Array Processing
(
Springer-Verlag
,
Berlin
), p.
193
.
38.
Richter
,
J. G.
,
Pollow
,
M.
,
Wefers
,
F.
, and
Fels
,
J.
(
2014
). “
Spherical harmonics based HRTF datasets: Implementation and evaluation for real-time auralization
,”
Acta Acust. united Acust.
100
(
4
),
667
675
.
39.
Saunders
,
G.
(
1790
).
Treatise on Theaters
(
I. and J. Taylor
,
London
), pp.
1
94
.
40.
Trendelenburg
,
F.
(
1929
). “
Contribution to the question of voice directivity
,”
Z. Techn. Phys.
11
,
558
563
.
41.
Williams
,
E. G.
(
1999
).
Fourier Acoustics—Sound Radiation and Nearfield Acoustical Holography
(
Academic Press
,
London
).
42.
Wyatt
,
B.
(
1813
).
Observation on the Design for the Theatre Royal, Drury Lane
(
J. Taylor
,
London
), pp.
1
70
.
43.
Xie
,
B.
(
2009
). “
On the low frequency characteristics of head-related transfer function
,”
Chin. J. Acoust.
28
,
1
13
.
You do not currently have access to this content.