The classical guitar is a popular string instrument in which the sound results from a coupled mechanical process. The oscillation of the plucked strings is transferred through the bridge to the body, which acts as an amplifier to radiate the sound. In this contribution, a procedure to create a numerical finite element (FE) model of a classical guitar with the help of experimental data is presented. The geometry of the guitar is reverse-engineered from computed tomography scans to a very high level of detail, and care is taken in including all necessary physical influences. All of the five different types of wood used in the guitar are modeled with their corresponding orthotropic material characteristics, and the fluid-structure interaction between the guitar body and the enclosed air is taken into account by discretizing the air volume inside the guitar with FEs in addition to the discretization of the structural parts. Besides the numerical model, an experimental setup is proposed to identify the modal parameters of a guitar. The procedure concludes with determining reasonable material properties for the numerical model using experimental data. The quality of the resulting model is demonstrated by comparing the numerically calculated and experimentally identified modal parameters.

1.
Abaqus
. (
2014
).
Analysis User's Guide
(
Simulia
,
Providence
).
2.
Allemang
,
R.
, and
Brown
,
D.
(
2006
). “
A complete review of the complex mode indicator function (CMIF) with applications
,” in
Proceedings of ISMA International Conference on Noise and Vibration Engineering
.
3.
Bader
,
R.
(
2006
).
Computational Mechanics of the Classical Guitar
(
Springer Science and Business Media
,
Berlin
).
4.
Bécache
,
E.
,
Chaigne
,
A.
,
Derveaux
,
G.
, and
Joly
,
P.
(
2005
). “
Numerical simulation of a guitar
,”
Comput. Struct.
83
(
2-3
),
107
126
.
5.
Boullosa
,
R. R.
(
2002
). “
Vibration measurements in the classical guitar
,”
Appl. Acoust.
63
(
3
),
311
322
.
6.
Brauchler
,
A.
,
Ziegler
,
P.
, and
Eberhard
,
P.
(
2020a
). “
Examination of polarization coupling in a plucked musical instrument string via experiments and simulations
,”
Acta Acust.
4
(
3
),
9
.
7.
Brauchler
,
A.
,
Ziegler
,
P.
, and
Eberhard
,
P.
(
2020b
). “
Numerical models for classical guitars with updated parameters from experimental data
,” in
Proceedings of Forum Acusticum 2020
, Lyon.
8.
Buzug
,
T.
(
2011
).
Computed Tomography
(
Springer
,
Berlin
), pp.
311
342
.
9.
Caldersmith
,
G.
(
1978
). “
Guitar as a reflex enclosure
,”
J. Acoust. Soc. Am.
63
(
5
),
1566
1575
.
10.
Chomette
,
B.
, and
Le Carrou
,
J.-L.
(
2015
). “
Operational modal analysis applied to the concert harp
,”
Mech. Syst. Signal Process.
56-57
,
81
91
.
11.
Christensen
,
O.
(
1982
). “
Quantitative models for low frequency guitar function
,”
J. Guitar Acoust.
6
,
10
25
.
12.
Derveaux
,
G.
,
Chaigne
,
A.
,
Joly
,
P.
, and
Bécache
,
E.
(
2003
). “
Time-domain simulation of a guitar: Model and method
,”
J. Acoust. Soc. Am.
114
(
6
),
3368
3383
.
13.
Ducceschi
,
M.
, and
Bilbao
,
S.
(
2016
). “
Linear stiff string vibrations in musical acoustics: Assessment and comparison of models
,”
J. Acoust. Soc. Am.
140
(
4
),
2445
2454
.
14.
Elejabarrieta
,
M.
,
Ezcurra
,
A.
, and
Santamaria
,
C.
(
2000
). “
Evolution of the vibrational behavior of a guitar soundboard along successive construction phases by means of the modal analysis technique
,”
J. Acoust. Soc. Am.
108
(
1
),
369
378
.
15.
Ewins
,
D.
(
2000
).
Modal Testing, Theory, Practice, and Application
, 2nd ed. (
Research Studies
,
Baldock
).
16.
Ezcurra
,
A.
,
Elejabarrieta
,
M.
, and
Santamaria
,
C.
(
2005
). “
Fluid–structure coupling in the guitar box: Numerical and experimental comparative study
,”
Appl. Acoust.
66
(
4
),
411
425
.
17.
Fletcher
,
N.
, and
Rossing
,
T.
(
1991
).
The Physics of Musical Instruments
(
Springer Science and Business Media
,
New York
).
18.
French
,
M.
(
2007
). “
Structural modification of stringed instruments
,”
Mech. Syst. Signal Process.
21
(
1
),
98
107
.
19.
Fritz
,
C.
,
Curtin
,
J.
,
Poitevineau
,
J.
,
Morrel-Samuels
,
P.
, and
Tao
,
F.
(
2012
). “
Player preferences among new and old violins
,”
Proc. Nat. Acad. Sci. U.S.A.
109
(
3
),
760
763
.
20.
Gore
,
T.
(
2011
). “
Wood for guitars
,”
Proc. Mtgs. Acoust.
12
,
035001
.
21.
Hiller
,
L.
, and
Ruiz
,
P.
(
1971
). “
Synthesizing musical sounds by solving the wave equation for vibrating objects: Part 1
,”
J. Audio Eng. Soc.
19
(
6
),
462
470
.
22.
Issanchou
,
C.
,
Le Carrou
,
J.
,
Touzé
,
C.
,
Fabre
,
B.
, and
Doaré
,
O.
(
2018
). “
String/frets contacts in the electric bass sound: Simulations and experiments
,”
Appl. Acoust.
129
,
217
228
.
23.
Konopka
,
D.
,
Gebhardt
,
C.
, and
Kaliske
,
M.
(
2017
). “
Numerical modelling of wooden structures
,”
J. Cult. Heritage
27
,
S93
S102
.
24.
Kretschmann
,
D.
(
2010
). “
Mechanical properties of wood
,” in
Wood Handbook: Wood as an Engineering Material
(
Forest Products Laboratory
,
Madison
), available at https://www.fpl.fs.fed.us/documnts/fplgtr/fpl_gtr190.pdf (Last viewed 14 June 2021).
25.
Lämmlein
,
S.
,
Van Damme
,
B.
,
Mannes
,
D.
,
Schwarze
,
F.
, and
Burgert
,
I.
(
2020
). “
Violin varnish induced changes in the vibro-mechanical properties of spruce and maple wood
,”
Holzforschung
1
,
765
776
.
26.
Popp
,
J.
(
2012
). “
Four mass coupled oscillator guitar model
,”
J. Acoust. Soc. Am.
131
(
1
),
829
836
.
27.
Pyrkosz
,
M. A.
(
2013
). “
Reverse engineering the structural and acoustic behavior of a Stradivari violin
,” Ph.D. thesis,
Michigan Technological University
, Houghton, Michigan.
28.
Richardson
,
B.
, and
Roberts
,
G.
(
1983
). “
The adjustment of mode frequencies in guitars: A study by means of holographic interferometry and finite element analysis
,” in
Proceedings of the Stockholm Music Acoustics Conference
, Stockholm, Vol.
83
, pp.
285
302
.
29.
Saitis
,
C.
,
Giordano
,
B.
,
Fritz
,
C.
, and
Scavone
,
G.
(
2012
). “
Perceptual evaluation of violins: A quantitative analysis of preference judgments by experienced players
,”
J. Acoust. Soc. Am.
132
(
6
),
4002
4012
.
30.
Šali
,
S.
, and
Kopač
,
J.
(
2000
). “
Measuring the quality of guitar tone
,”
Exp. Mech.
40
(
3
),
242
247
.
31.
Sigrist
,
J.-F.
(
2015
).
Fluid-Structure Interaction: An Introduction to Finite Element Coupling
(
Wiley
,
Hoboken, NJ
).
32.
Sobol
,
I.
,
Asotsky
,
D.
,
Kreinin
,
A.
, and
Kucherenko
,
S.
(
2011
). “
Construction and comparison of high-dimensional sobol generators
,”
Wilmott
2011
(
56
),
64
79
.
33.
Stanciu
,
M. D.
,
Vlase
,
S.
, and
Marin
,
M.
(
2019
). “
Vibration analysis of a guitar considered as a symmetrical mechanical system
,”
Symmetry
11
(
6
),
727
.
34.
Tahvanainen
,
H.
,
Matsuda
,
H.
, and
Shinoda
,
R.
(
2019
). “
Numerical simulation of the acoustic guitar in virtual prototyping
,” in
Proceedings of ISMA 2019
, Detmold.
35.
Torres
,
J.
, and
Boullosa
,
R.
(
2009
). “
Influence of the bridge on the vibrations of the top plate of a classical guitar
,”
Appl. Acoust.
70
(
11-12
),
1371
1377
.
36.
Torres
,
J. A.
,
Soto
,
C. A.
, and
Torres-Torres
,
D.
(
2020
). “
Exploring design variations of the titian Stradivari violin using a finite element model
,”
J. Acoust. Soc. Am.
148
(
3
),
1496
1506
.
37.
Torres
,
J. A.
, and
Torres-Martínez
,
R.
(
2015
). “
Evaluation of guitars and violins made using alternative woods through mobility measurements
,”
Arch. Acoust.
40
(
3
),
351
358
.
38.
Välimäki
,
V.
,
Pakarinen
,
J.
,
Erkut
,
C.
, and
Karjalainen
,
M.
(
2006
). “
Discrete-time modelling of musical instruments
,”
Rep. Prog. Phys.
69
(
1
),
1
78
.
39.
Viala
,
R.
,
Placet
,
V.
, and
Cogan
,
S.
(
2018
). “
Identification of the anisotropic elastic and damping properties of complex shape composite parts using an inverse method based on finite element model updating and 3D velocity fields measurements (FEMU-3DVF): Application to bio-based composite violin soundboards
,”
Compos. Part A: Appl. Sci. Manuf.
106
,
91
103
.
40.
Viala
,
R.
,
Placet
,
V.
,
Le Conte
,
S.
,
Vaiedelich
,
S.
, and
Cogan
,
S.
(
2020
). “
Model-based decision support methods applied to the conservation of musical instruments: Application to an antique cello
,” in
Model Validation and Uncertainty Quantification
, 3rd ed. (
Springer
,
Cham, Switzerland
), pp.
223
227
.
41.
Wegst
,
U. G. K.
(
2006
). “
Wood for sound
,”
Am. J. Botany
93
(
10
),
1439
1448
.
42.
Woodhouse
,
J.
(
2004a
). “
On the synthesis of guitar plucks
,”
Acta Acust. Acust.
90
(
5
),
928
944
.
43.
Woodhouse
,
J.
(
2004b
). “
Plucked guitar transients: Comparison of measurements and synthesis
,”
Acta Acust. Acust.
90
(
5
),
945
965
.
You do not currently have access to this content.