Additive manufacturing has expanded greatly in recent years with the promise of being able to create complex and custom structures at will. Enhanced control over the microstructure properties, such as percent porosity, is valuable to the acoustic design of materials. In this work, aluminum foams are fabricated using a modified powder bed fusion method, which enables voxel-by-voxel printing of structures ranging from fully dense to approximately 50% porosity. To understand the acoustic response, samples are measured in an acoustic impedance tube and characterized with the Johnson–Champoux–Allard–Lafarge model for rigid-frame foams. Bayesian statistical inversion of the model parameters is performed to assess the applicability of commonly employed measurement and modeling methods for traditional foams to the additively manufactured, low porosity aluminum foams. This preliminary characterization provides insights into how emerging voxel-by-voxel additive manufacturing approaches could be used to fabricate acoustic metal foams and what could be learned about the microstructure using traditional measurement and analysis techniques.

1.
I. S.
Golovin
and
H.-R.
Sinning
, “
Damping in some cellular metallic materials
,”
J. All. Compd.
355
,
2
9
(
2003
).
2.
J. F.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media
, 2nd ed. (
John Wiley and Sons Ltd
,
Chichester, UK
,
2009
), pp.
73
90
.
3.
S.
He
,
Y.
Lv
,
S.
Chen
,
G.
Dai
,
J.
Liu
, and
M.
Huo
, “
Gradient regulation and compressive properties of density-graded aluminum foam
,”
Mat. Sci. Eng. A
772
,
138658
(
2020
).
4.
M. J.
Cops
,
J. G.
McDaniel
,
M. A.
Magliula
,
D. J.
Bamford
, and
J.
Bliefnick
, “
Measurement and analysis of sound absorption by a composite foam
,”
Appl. Acoust.
160
,
107138
(
2020
).
5.
A.
Großmann
,
J.
Gosmann
, and
C.
Mittelstedt
, “
Lightweight lattice structures in selective laser melting: Design, fabrication and mechanical properties
,”
Mater. Sci. Eng. A
766
,
138356
(
2019
).
6.
J.
Boulvert
,
J.
Costa-Baptista
,
T.
Cavalieri
,
M.
Perna
,
E. R.
Fotsing
,
V.
Romero-García
,
G.
Gabard
,
A.
Ross
,
J.
Mardjono
, and
J. P.
Groby
, “
Acoustic modeling of micro-lattices obtained by additive manufacturing
,”
Appl. Acoust.
164
,
107244
(
2020
).
7.
T. G.
Zieliński
,
K. C.
Opiela
,
P.
Pawłowski
,
N.
Dauchez
,
T.
Boutin
,
J.
Kennedy
,
D.
Trimble
,
H.
Rice
,
B.
Van Damme
,
G.
Hannema
,
R.
Wróbel
,
S.
Kim
,
S.
Ghaffari Mosanenzadeh
,
N. X.
Fang
,
J.
Yang
,
B.
Briere de La Hosseraye
,
M. C.
Hornikx
,
E.
Salze
,
M.-A.
Galland
,
R.
Boonen
,
A.
Carvalho de Sousa
,
E.
Deckers
,
M.
Gaborit
, and
J.-P.
Groby
, “
Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study
,”
Addit. Manuf.
36
,
101564
(
2020
).
8.
J.
Kennedy
,
L.
Flanagan
,
L.
Dowling
,
G.
Bennett
,
H.
Rice
, and
D.
Trimble
, “
The influence of additive manufacturing processes on the performance of a periodic acoustic metamaterial
,”
Int. J. Polym. Sci.
2019
,
1
11
(
2019
).
9.
T.
Frenzel
,
J.
Kopfler
,
E.
Jung
,
M.
Kadic
, and
M.
Wegener
, “
Ultrasound experiments on acoustical activity in chiral mechanical metamaterials
,”
Nat. Commun.
10
,
3384
(
2019
).
10.
R.
Hedayati
,
A. M.
Leeflang
, and
A. A.
Zadpoor
, “
Additively manufactured metallic pentamode meta-materials
,”
Appl. Phys. Lett.
110
(
9
),
091905
(
2017
).
11.
C.
Yan
,
L.
Hao
,
A.
Hussein
,
P.
Young
,
J.
Huang
, and
W.
Zhu
, “
Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering
,”
Mater. Sci. Eng. A
628
,
238
246
(
2015
).
12.
J. T.
Muth
,
P. G.
Dixon
,
L.
Woish
,
L. J.
Gibson
, and
J. A.
Lewis
, “
Architected cellular ceramics with tailored stiffness via direct foam writing
,”
Proc. Natl. Acad. Sci. U.S.A.
114
(
8
),
1832
1837
(
2017
).
13.
K.
Huang
,
H.
Elsayed
,
G.
Franchin
, and
P.
Colombo
, “
3D printing of polymer-derived SiOC with hierarchical and tunable porosity
,”
Addit. Manuf.
36
,
101549
(
2020
).
14.
T.
Kozuki
,
H.
Toshinori
,
T.
Shirai
,
S.
Nakashima
,
Y.
Asano
,
Y.
Kakiuchi
,
K.
Okada
, and
M.
Inaba
, “
Skeletal structure with artificial perspiration for cooling by latent heat for musculoskeletal humanoid kengoro
,” in
Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Daejeon, South Korea (October 9–14,
2016
), pp.
2135
2140
.
15.
B. I.
Furst
,
S.
Cappucci
,
S. N.
Roberts
,
T.
Daimaru
,
E. T.
Sunada
, and
T. P.
O'Donnell
, “
An additively manufactured evaporator with integrated porous structures for two-phase thermal control
,” in
Proceedings of the 48th International Conference on Environmental Systems
, Albuquerque, NM (July 8–12,
2018
), Vol.
176
, pp.
1
8
.
16.
X.
Olny
and
C.
Boutin
, “
Acoustic wave propagation in double porosity media
,”
J. Acoust. Soc. Am.
114
(
1
),
73
89
(
2003
).
17.
X.
Zheng
,
W.
Smith
,
J.
Jackson
,
B.
Moran
,
H.
Cui
,
D.
Chen
,
J.
Ye
,
N.
Fang
,
N.
Rodriguez
,
T.
Weisgraber
, and
C. M.
Spadaccini
, “
Multiscale metallic metamaterials
,”
Nat. Mater.
15
,
1100
1106
(
2016
).
18.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
19.
Y.
Champoux
and
J.-F.
Allard
, “
Dynamic tortuosity and bulk modulus in air-saturated porous media
,”
J. Appl. Phys.
70
(
4
),
1975
1979
(
1991
).
20.
D.
Lafarge
,
P.
Lemarinier
,
J. F.
Allard
, and
V.
Tarnow
, “
Dynamic compressibility of air in porous structures at audible frequencies
,”
J. Acoust. Soc. Am.
102
(
4
),
1995
2006
(
1997
).
21.
R.
Panneton
and
X.
Olny
, “
Acoustical determination of the parameters governing viscous dissipation in porous media
,”
J. Acoust. Soc. Am.
119
(
4
),
2027
2040
(
2006
).
22.
X.
Olny
and
R.
Panneton
, “
Acoustical determination of the parameters governing thermal dissipation in porous media
,”
J. Acoust. Soc. Am.
123
(
2
),
814
824
(
2008
).
23.
O.
Doutres
,
Y.
Salissou
,
N.
Atalla
, and
R.
Panneton
, “
Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube
,”
Appl. Acoust.
71
(
6
),
506
509
(
2010
).
24.
T. G.
Zieliński
, “
Normalized inverse characterization of sound absorbing rigid porous media
,”
J. Acoust. Soc. Am.
137
(
6
),
3232
3243
(
2015
).
25.
M. B.
Mansour
,
E.
Ogam
,
A.
Jelidi
,
A. S.
Cherif
, and
S. B.
Jabrallah
, “
Influence of compaction pressure on the mechanical and acoustic properties of compacted Earth blocks: An inverse multi-parameter acoustic problem
,”
Appl. Acoust.
125
,
128
135
(
2017
).
26.
M.
Niskanen
,
J. P.
Groby
,
A.
Duclos
,
O.
Dazel
,
J. C. L.
Roux
,
N.
Poulain
,
T.
Huttunen
, and
T.
Lähivaara
, “
Deterministic and statistical characterization of rigid frame porous materials from impedance tube measurements
,”
J. Acoust. Soc. Am.
142
(
4
),
2407
2418
(
2017
).
27.
J.-D.
Chazot
,
E.
Zhang
, and
J.
Antoni
, “
Acoustical and mechanical characterization of poroelastic materials using a bayesian approach
,”
J. Acoust. Soc. Am.
131
(
6
),
4584
4595
(
2012
).
28.
R.
Roncen
,
Z. E.
Fellah
,
D.
Lafarge
,
E.
Piot
,
F.
Simon
,
E.
Ogam
,
M.
Fellah
, and
C.
Depollier
, “
Acoustical modeling and Bayesian inference for rigid porous media in the low-mid frequency regime
,”
J. Acoust. Soc. Am.
144
(
6
),
3084
3101
(
2018
).
29.
B. G.
Compton
and
J. A.
Lewis
, “
3D-printing of lightweight cellular composites
,”
Adv. Mater.
26
,
5930
5935
(
2014
).
30.
S.
Singh
and
N.
Bhatnagar
, “
A survey of fabrication and application of metallic foams (1925–2017)
,”
J. Porous Mater.
25
,
537
554
(
2018
).
31.
A.
Pollien
,
Y.
Conde
,
L.
Pambaguian
, and
A.
Mortensen
, “
Graded open-cell aluminium foam core sandwich beams
,”
Mat. Sci. Eng. A
404
,
9
18
(
2005
).
32.
M. J.
Cops
,
J. G.
McDaniel
,
E. A.
Magliula
,
D. J.
Bamford
, and
J.
Bliefnick
, “
Sound absorption by metallic foam after triaxial hydrostatic compression
,”
J. Acoust. Soc. Am.
147
(
5
),
3594
3604
(
2020
).
33.
N. A.
Meisel
,
C. B.
Williams
, and
A.
Druschitz
, “
Lightweight metal cellular structures via indirect 3D printing and casting
,” in
Proceedings of the International Solid Freeform Fabrication Symposium,
Austin, TX (August 6–8,
2012
), pp.
162
176
.
34.
A.
Mostafaei
,
E. L.
Stevens
,
E. T.
Hughes
,
S. D.
Biery
,
C.
Hilla
, and
M.
Chmielus
, “
Powder bed binder jet printed alloy 625: Densification, microstructure and mechanical properties
,”
Mater. Design
108
,
126
135
(
2016
).
35.
I.-H.
Oh
,
N.
Nomura
,
N.
Masahashi
, and
S.
Hanada
, “
Mechanical properties of porous titanium compacts prepared by powder sintering
,”
Scritpa Mater.
49
,
1197
1202
(
2003
).
36.
Z. C.
Eckel
,
C.
Zhou
,
J. H.
Martin
,
A. J.
Jacobsen
,
W. B.
Carter
, and
T. A.
Schaedler
, “
Additive manufacturing of polymer-derived ceramics
,”
Science
351
(
6268
),
58
62
(
2014
).
37.
A.
Vyatskikh
,
S.
Delalande
,
A.
Kudo
,
X.
Zhang
,
C. M.
Portela
, and
J. R.
Greer
, “
Additive manufacturing of 3D nano-architected metals
,”
Nat. Commun.
9
,
593
(
2018
).
38.
C. Y.
Yap
,
C. K.
Chua
,
Z. L.
Dong
,
Z. H.
Liu
,
D. Q.
Zhang
,
L. E.
Loh
, and
S. L.
Sing
, “
Review of selective laser melting: Materials and applications
,”
Appl. Phys. Rev.
2
(
4
),
041101
(
2015
).
39.
J.
Zhang
,
B.
Song
,
Q.
Wei
,
D.
Bourell
, and
Y.
Shi
, “
A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends
,”
J. Mater. Sci. Technol.
35
,
270
284
(
2019
).
40.
D.
Herzog
,
V.
Seyda
,
E.
Wycisk
, and
C.
Emmelmann
, “
Additive manufacturing of metals
,”
Acta Mater.
117
,
371
392
(
2016
).
41.
N. T.
Aboulkhair
,
N. M.
Everitt
,
I.
Ashcroft
, and
C.
Tuck
, “
Reducing porosity in AlSi10Mg parts processed by selective laser melting
,”
Addit. Manuf.
1
,
77
86
(
2014
).
42.
B.
Richard
,
D.
Pellicone
, and
W.
Anderson
, “
Loop heat pipe wick fabrication via additive manufacturing
,” in
Proceedings of the 47th International Conference on Environmental Systems
, Charleston, SC (July 16–20,
2017
).
43.
S.
Vaucher
,
E.
Carreno-Morelli
,
C.
Andre
, and
O.
Beffort
, “
Selective laser sintering of aluminium- and titanium-based composites: Processing and characterisation
,”
Phys. Stat. Sol. (A)
199
(
3
),
R11
R13
(
2003
).
44.
S.
Bai
,
N.
Perevoshchikova
,
Y.
Sha
, and
X.
Wu
, “
The effects of selective laser melting process parameters on relative density of the AlSi10Mg parts and suitable procedures of the Archimedes method
,”
Appl. Sci.
9
(
3
),
583
(
2019
).
45.
A. H.
Maamoun
,
Y. F.
Xue
,
M. A.
Elbestawi
, and
S. C.
Veldhuis
, “
Effect of selective laser melting process parameters on the quality of Al alloy parts: Powder characterization, density, surface roughness, and dimensional accuracy
,”
Materials
11
,
2343
(
2018
).
46.
B. H.
Song
and
J. S.
Bolton
, “
A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials
,”
J. Acoust. Soc. Am.
107
(
3
),
1131
1152
(
2000
).
47.
T.
Dupont
,
P.
Leclaire
,
O.
Sicot
,
X. L.
Gong
, and
R.
Panneton
, “
Acoustic properties of air-saturated porous materials containing dead-end porosity
,”
J. Appl. Phys.
110
(
9
),
094903
(
2011
).
48.
A.
Otaru
, “
Enhancing the sound absorption performance of porous metals using tomography images
,”
Appl. Acoust.
143
,
183
189
(
2019
).
49.
R. C.
Aster
,
B.
Borchers
, and
C. H.
Thurber
,
Parameter Estimation and Inverse Problems
, 2nd ed. (
Elsevier
,
Amsterdam
,
2011
), pp. 255–260, 310, 312–329.
50.
M. D.
Hoffman
and
A.
Gelman
, “
The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo
,”
J. Mach. Learn. Res.
15
(
1
),
1593
1623
(
2014
).
51.
J.
Salvatier
,
T. V.
Wiecki
, and
C.
Fonnesbeck
, “
Probabilistic programming in Python using PyMC3
,”
PeerJ. Comput. Sci.
2
,
e55
(
2016
).
52.
P. A.
Berge
,
B. P.
Bonner
, and
J. G.
Berryman
, “
Ultrasonic velocity-porosity relationships for sandstone analogs made from fused glass beads
,”
Geophysics
60
(
1
),
108
119
(
1995
).
53.
T. J.
Plona
,
R.
D'Angel
, and
D. L.
Johnson
, “
Velocity and attenuation of fast, shear and slow waves in porous media
,” in
Proceedings of the IEEE Symposium on Ultrasonics
, Honolulu, HI (December 4–7,
1990
).
54.
F. C.
Sgard
,
X.
Olny
,
N.
Atalla
, and
F.
Castel
, “
On the use of perforations to improve the sound absorption of porous materials
,”
Appl. Acoust.
66
,
625
651
(
2004
).
You do not currently have access to this content.