Glottal resistance plays an important role in airflow conservation, especially in the context of high vocal demands. However, it remains unclear if laryngeal strategies most effective in controlling airflow during phonation are consistent with clinical manifestations of vocal hyperfunction. This study used a previously validated three-dimensional computational model of the vocal folds coupled with a respiratory model to investigate which laryngeal strategies were the best predictors of lung volume termination (LVT) and how these strategies' effects were modulated by respiratory parameters. Results indicated that the initial glottal angle and vertical thickness of the vocal folds were the best predictors of LVT regardless of subglottal pressure, lung volume initiation, and breath group duration. The effect of vertical thickness on LVT increased with the subglottal pressure—highlighting the importance of monitoring loudness during voice therapy to avoid laryngeal compensation—and decreased with increasing vocal fold stiffness. A positive initial glottal angle required an increase in vertical thickness to complete a target utterance, especially when the respiratory system was taxed. Overall, findings support the hypothesis that laryngeal strategies consistent with hyperfunctional voice disorders are effective in increasing LVT, and that conservation of airflow and respiratory effort may represent underlying mechanisms in those disorders.

1.
A.
Ziegler
,
J.
VanSwearingen
,
J. M.
Jakicic
, and
K.
Verdolini Abbott
, “
Phonation demonstrates goal dependence under unique vocal intensity and aerobic workload conditions
,”
J. Speech Lang. Hear. Res.
62
(
8
),
2584
2600
(
2019
).
2.
N. P.
Solomon
,
S. J.
Garlitz
, and
R. L.
Milbrath
, “
Respiratory and laryngeal contributions to maximum phonation duration
,”
J. Voice
14
(
3
),
331
340
(
2000
).
3.
S.
Fuchs
and
A.
Rochet-Capellan
, “
The respiratory foundations of spoken language
,”
Annu. Rev. Linguist.
7
,
13
30
(
2021
).
4.
Z.
Zhang
, “
Regulation of glottal closure and airflow in a three-dimensional phonation model: Implications for vocal intensity control
,”
J. Acoust. Soc. Am.
137
(
2
),
898
910
(
2015
).
5.
Z.
Zhang
, “
Restraining mechanisms in regulating glottal closure during phonation
,”
J. Acoust. Soc. Am.
130
(
6
),
4010
4019
(
2011
).
6.
N.
Isshiki
, “
Regulator mechanism of voice intensity variation
,”
J. Speech Hear. Res.
7
,
17
29
(
1964
).
7.
Z.
Zhang
, “
Respiratory laryngeal coordination in airflow conservation and reduction of respiratory effort of phonation
,”
J. Voice
30
(
6
),
760.e7
760.e13
(
2016
).
8.
K.
Aare
,
P.
Lippus
,
M.
Włodarczak
, and
M.
Heldner
, “
Creak in the respiratory cycle
,” in
Proceedings of Interspeech 2018
, edited by
B.
Yegnanarayana
(
The International Speech Communication Association
, Baixas, France,
2018
), pp.
1408
1412
.
9.
R. E.
Hillman
,
C. E.
Stepp
,
J. H.
Van Stan
,
M.
Zañartu
, and
D. D.
Mehta
, “
An updated theoretical framework for vocal hyperfunction
,”
Am. J. Speech-Lang. Pathol.
29
(
4
),
2254
2260
(
2020
).
10.
C. M.
Sapienza
and
E. T.
Stathopoulos
, “
Respiratory and laryngeal measures of children and women with bilateral vocal fold nodules
,”
J. Speech Hear. Res.
37
(
6
),
1229
1243
(
1994
).
11.
C. M.
Sapienza
,
E. T.
Stathopoulos
, and
W. S.
Brown
, Jr.
, “
Speech breathing during reading in women with vocal nodules
,”
J. Voice
11
(
2
),
195
201
(
1997
).
12.
S. Y.
Lowell
,
J. M.
Barkmeier-Kraemer
,
J. D.
Hoit
, and
B. H.
Story
, “
Respiratory and laryngeal function during spontaneous speaking in teachers with voice disorders
,”
J. Speech Lang. Hear. Res.
51
(
2
),
333
349
(
2008
).
13.
M. A.
Belsky
,
S. D.
Rothenberger
,
A. I.
Gillespie
, and
J. L.
Gartner-Schmidt
, “
Do phonatory aerodynamic and acoustic measures in connected speech differ between vocally healthy adults and patients diagnosed with muscle tension dysphonia?
,”
J. Voice
(published online).
14.
Z.
Zhang
, “
Compensation strategies in voice production with glottal insufficiency
,”
J. Voice
33
(
1
),
96
102
(
2019
).
15.
Z.
Zhang
, “
Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model
,”
J. Acoust. Soc. Am.
139
(
4
),
1493
1507
(
2016
).
16.
J. G.
Venegas
,
R. S.
Harris
, and
B. A.
Simon
, “
A comprehensive equation for the pulmonary pressure-volume curve
,”
J. Appl. Physiol.
84
(
1
),
389
395
(
1998
).
17.
J. J.
Jiang
and
I. R.
Titze
, “
Measurement of vocal fold intraglottal pressure and impact stress
,”
J. Voice
8
(
2
),
132
144
(
1994
).
18.
D. A.
Berry
,
K.
Verdolini
,
D. W.
Montequin
,
M. M.
Hess
,
R. W.
Chan
, and
I. R.
Titze
, “
A quantitative output-cost ratio in voice production
,”
J. Speech Lang. Hear. Res.
44
(
1
),
29
37
(
2001
).
19.
F.
Alipour
,
D. A.
Berry
, and
I. R.
Titze
, “
A finite-element model of vocal-fold vibration
,”
J. Acoust. Soc. Am.
108
(
6
),
3003
3012
(
2000
).
20.
R. C.
Scherer
,
D.
Shinwari
,
K. J.
De Witt
,
C.
Zhang
,
B. R.
Kucinschi
, and
A. A.
Afjeh
, “
Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees
,”
J. Acoust. Soc. Am.
109
(
4
),
1616
1630
(
2001
).
21.
P.
Sidlof
,
J. G.
Svec
,
J.
Horácek
,
J.
Veselý
,
I.
Klepácek
, and
R.
Havlík
, “
Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production
,”
J. Biomech.
41
(
5
),
985
995
(
2008
).
22.
I. R.
Titze
and
D. T.
Talkin
, “
A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation
,”
J. Acoust. Soc. Am.
66
(
1
),
60
74
(
1979
).
23.
Z.
Zhang
, “
Vocal instabilities in a three-dimensional body-cover phonation model
,”
J. Acoust. Soc. Am.
144
(
3
),
1216
1230
(
2018
).
24.
R. I.
Zraick
,
L.
Smith-Olinde
, and
L. L.
Shotts
, “
Adult normative data for the KayPENTAX Phonatory Aerodynamic System Model 6600
,”
J. Voice
26
(
2
),
164
176
(
2012
).
25.
A. I.
Gillespie
,
J.
Gartner-Schmidt
,
E. N.
Rubinstein
, and
K. V.
Abbott
, “
Aerodynamic profiles of women with muscle tension dysphonia/aphonia
,”
J. Speech Lang. Hear. Res.
56
(
2
),
481
488
(
2013
).
26.
J. E.
Huber
, “
Effect of cues to increase sound pressure level on respiratory kinematic patterns during connected speech
,”
J. Speech Lang. Hear. Res.
50
(
3
),
621
634
(
2007
).
27.
Y. T.
Wang
,
J. R.
Green
,
I. S.
Nip
,
R. D.
Kent
, and
J. F.
Kent
, “
Breath group analysis for reading and spontaneous speech in healthy adults
,”
Folia Phoniatr. Logop.
62
(
6
),
297
302
(
2010
).
28.
R.
Konnai
,
R. C.
Scherer
,
A.
Peplinski
, and
K.
Ryan
, “
Whisper and phonation: Aerodynamic comparisons across adduction and loudness
,”
J. Voice
31
(
6
),
773.e11
773.e20
(
2017
).
29.
D. A.
Berry
,
H.
Herzel
,
I. R.
Titze
, and
K.
Krischer
, “
Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions
,”
J. Acoust. Soc. Am.
95
(
6
),
3595
3604
(
1994
).
30.
J. D.
Hoit
and
T. J.
Hixon
, “
Age and speech breathing
,”
J. Speech Hear. Res.
30
(
3
),
351
366
(
1987
).
31.
A. L.
Winkworth
,
P. J.
Davis
,
R. D.
Adams
, and
E.
Ellis
, “
Breathing patterns during spontaneous speech
,”
J. Speech Hear. Res.
38
(
1
),
124
144
(
1995
).
32.
E. T.
Stathopoulos
and
C.
Sapienza
, “
Respiratory and laryngeal function of women and men during vocal intensity variation
,”
J. Speech Hear. Res.
36
(
1
),
64
75
(
1993
).
33.
F.
Alipour
and
R. C.
Scherer
, “
Vocal fold bulging effects on phonation using a biophysical computer model
,”
J. Voice
14
(
4
),
470
483
(
2000
).
34.
X.
Wang
,
W.
Jiang
,
X.
Zheng
, and
Q.
Xue
, “
A computational study of the effects of vocal fold stiffness parameters on voice production
,”
J. Voice
35
(
2
),
327.e1
327.e11
(
2021
).
35.
A. M.
Vahabzadeh-Hagh
,
Z.
Zhang
, and
D. K.
Chhetri
, “
Quantitative evaluation of the in vivo vocal fold medial surface shape
,”
J. Voice
31
(
4
),
513.e15
513.e23
(
2017
).
36.
Z.
Zhang
,
H.
Samajder
, and
J. L.
Long
, “
Biaxial mechanical properties of human vocal fold cover under vocal fold elongation
,”
J. Acoust. Soc. Am.
142
(
4
),
356
361
(
2017
).
37.
Z.
Zhang
, “
Mechanics of human voice production and control
,”
J. Acoust. Soc. Am.
140
(
4
),
2614
2635
(
2016
).
38.
S. Y.
Lowell
,
R. H.
Colton
,
R. T.
Kelley
,
M.
Auld
, and
H.
Schmitz
, “
Isolated and combined respiratory training for muscle tension dysphonia: Preliminary findings
,”
J. Voice
(published online).
39.
Z.
Zhang
, “
Laryngeal strategies to minimize vocal fold contact pressure and their effect on voice production
,”
J. Acoust. Soc. Am.
148
(
2
),
1039
1050
(
2020
).
40.
I. R.
Titze
, “
Voice training and therapy with a semi-occluded vocal tract: Rationale and scientific underpinnings
,”
J. Speech Lang. Hear. Res.
49
(
2
),
448
459
(
2006
).
41.
V. M.
Espinoza
,
M.
Zanartu
,
J. H.
Van Stan
,
D. D.
Mehta
, and
R. E.
Hillman
, “
Glottal aerodynamic measures in women with phonotraumatic and nonphonotraumatic vocal hyperfunction
,”
J. Speech Lang. Hear. Res.
60
(
8
),
2159
2169
(
2017
).
42.
K.
Verdolini
,
D. G.
Druker
,
P. M.
Palmer
, and
H.
Samawi
, “
Laryngeal adduction in resonant voice
,”
J. Voice
12
(
3
),
315
327
(
1998
).
43.
G. E.
Galindo
,
S. D.
Peterson
,
B. D.
Erath
,
C.
Castro
,
R. E.
Hillman
, and
M.
Zañartu
, “
Modeling the pathophysiology of phonotraumatic vocal hyperfunction with a triangular glottal model of the vocal folds
,”
J. Speech Lang. Hear. Res.
60
(
9
),
2452
2471
(
2017
).
44.
M.
Zañartu
,
G. E.
Galindo
,
B. D.
Erath
,
S. D.
Peterson
,
G. R.
Wodicka
, and
R. E.
Hillman
, “
Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction
,”
J. Acoust. Soc. Am.
136
(
6
),
3262
3271
(
2014
).
45.
M. D.
Morrison
and
L. A.
Rammage
, “
Muscle misuse voice disorders: Description and classification
,”
Acta Otolaryngol.
113
(
3
),
428
434
(
1993
).
46.
J. A.
Koufman
and
P. D.
Blalock
, “
Functional voice disorders
,”
Otolaryngol. Clin. North Am.
24
(
5
),
1059
1073
(
1991
).
47.
R. W.
Chan
,
I. R.
Titze
, and
M. R.
Titze
, “
Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa
,”
J. Acoust. Soc. Am.
101
(
6
),
3722
3727
(
1997
).
48.
L.
Wu
and
Z.
Zhang
, “
Voice production in a MRI-based subject-specific vocal fold model with parametrically controlled medial surface shape
,”
J. Acoust. Soc. Am.
146
(
6
),
4190
4198
(
2019
).
49.
J.
Iwarsson
,
M.
Thomasson
, and
J.
Sundberg
, “
Effects of lung volume on the glottal voice source
,”
J. Voice
12
(
4
),
424
433
(
1998
).
50.
C. F.
Milstein
, “
Laryngeal function associated with changes in lung volume during voice and speech production in normal speaking women
,” Ph.D. dissertation,
The University of Arizona
,
1999
, pp.
87
137
.
51.
K.
Verdolini-Marston
,
M. K.
Burke
,
A.
Lessac
,
L.
Glaze
, and
E.
Caldwell
, “
Preliminary study of two methods of treatment for laryngeal nodules
,”
J. Voice
9
(
1
),
74
85
(
1995
).
52.
P. H.
Dejonckere
,
J.
Lebacq
,
L.
Bocchi
,
S.
Orlandi
, and
C.
Manfredi
, “
Automated tracking of quantitative parameters from single line scanning of vocal folds: A case study of the ‘messa di voce’ exercise
,”
Logoped. Phoniatr. Vocol.
40
(
1
),
44
54
(
2015
).
53.
I. R.
Titze
,
R.
Long
,
G. I.
Shirley
,
E.
Stathopoulos
,
L. O.
Ramig
,
L. M.
Carroll
, and
W. D.
Riley
, “
Messa di voce: An investigation of the symmetry of crescendo and decrescendo in a singing exercise
,”
J. Acoust. Soc. Am.
105
(
5
),
2933
2940
(
1999
).
54.
D. K.
Chhetri
and
S. J.
Park
, “
Interactions of subglottal pressure and neuromuscular activation on fundamental frequency and intensity
,”
Laryngoscope
126
(
5
),
1123
1130
(
2016
).
55.
K.
Verdolini Abbott
,
Lessac-Madsen Resonant Voice Therapy: Clinician Manual
(
Plural
,
San Diego
,
2008
),
28
pp.
56.
J.
Iwarsson
and
J.
Sundberg
, “
Effects of lung volume on vertical larynx position during phonation
,”
J. Voice
12
(
2
),
159
165
(
1998
).
57.
J. C.
Stemple
,
L.
Lee
,
B.
D'Amico
, and
B.
Pickup
, “
Efficacy of vocal function exercises as a method of improving voice production
,”
J. Voice
8
(
3
),
271
278
(
1994
).
You do not currently have access to this content.