A variable focus optical lens using a thixotropic gel and ultrasonic vibration is discussed. The surface profile of the gel could be deformed via acoustic radiation force generated by ultrasound. A thixotropic gel in which the viscosity was changed by shear stress was employed as a transparent lens material. The thixotropic gel allowed the lens to maintain shape deformation in the absence of continuous ultrasound excitation. The lens had a simple structure with no mechanical moving parts and included an annular piezoelectric transducer, a glass disk, and the thixotropic gel film. The axisymmetric concentric flexural vibration mode was generated on the lens at 71 kHz, which resulted in static surface deformation of the gel via the acoustic radiation force. The preservation rate was investigated after switching off the ultrasonic excitation. There was a trade-off between the preservation rate of the lens deformation and the response time for focusing. The focal length could be controlled via the input voltage to the lens, and a variable-focus convex lens could be realized; the change in the focal length with 4.0 Vpp was 0.54 mm. The optical transmittance of the lens was measured and the transmittance ranged 70%–80% in the visible spectral region.

1.
C. S.
Liu
and
P. D.
Lin
, “
A miniaturized low-power VCM actuator for auto-focusing applications
,”
Opt. Express
16
,
2533
2540
(
2008
).
2.
H.
Ko
,
H.
Jeong
, and
B.
Koc
, “
Piezoelectric actuator for mobile auto focus camera applications
,”
J. Electroceram.
23
,
530
535
(
2009
).
3.
H. C.
Yu
,
T. Y.
Lee
,
S. J.
Wang
,
M. L.
Lai
,
J. J.
Ju
,
D. R.
Huang
, and
S. K.
Lin
, “
Design of a voice coil motor used in the focusing system of a digital video camera
,”
IEEE Trans. Magn.
41
,
3979
3981
(
2005
).
4.
N.
Mizoguchi
,
H.
Oku
, and
M.
Ishikawa
, “
High-speed variable-focus optical system for extended depth of field
,” in
Proceedings of the IEEE International Symposium on Industrial Electronics 2009
(
2009
), pp.
1668
1673
.
5.
H.
Oku
and
M.
Ishikawa
, “
High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error
,”
Appl. Phys. Lett.
94
,
221108
(
2009
).
6.
C. B.
Gorman
,
H. A.
Biebuyck
, and
G. M.
Whitesides
, “
Control of the shape of liquid lenses on a modified gold
,”
Langmuir
11
,
2242
2246
(
1995
).
7.
S.
Kuiper
and
B.
Hendriks
, “
Variable-focus liquid lens for miniature cameras
,”
Appl. Phys. Lett.
85
,
1128
1130
(
2004
).
8.
F.
Krogmann
,
W.
Mönch
, and
H.
Zappe
, “
A MEMS-based variable micro-lens system
,”
J. Opt. A: Pure Appl. Opt.
8
,
S330
S336
(
2006
).
9.
H.
Ren
and
S.
Wu
, “
Variable-focus liquid lens by changing aperture
,”
Appl. Phys. Lett.
86
,
211107
(
2005
).
10.
B.
Berge
and
J.
Peseux
, “
Variable focal lens controlled by an external voltage: An application of electrowetting
,”
Eur. Phys. J. E
3
,
159
163
(
2000
).
11.
L.
Dong
,
A.
Agarwal
,
D.
Beebe
, and
H.
Jiang
, “
Adaptive liquid microlenses activated by stimuli-responsive hydrogels
,”
Nature
442
,
551
554
(
2006
).
12.
C.
López
and
A.
Hirsa
, “
Fast focusing using a pinned-contact oscillating liquid lens
,”
Nat. Photon.
2
,
610
613
(
2008
).
13.
C. A.
López
,
C.
Lee
, and
A. H.
Hirsa
, “
Electrochemically activated adaptive liquid lens
,”
Appl. Phys. Lett.
87
,
134102
(
2005
).
14.
A.
Mermillod-Blondin
,
E.
Mcleod
, and
C. B.
Arnold
, “
High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens
,”
Opt. Lett.
33
,
2146
2148
(
2008
).
15.
N.
Olivier
,
A.
Mermillod-Blondin
,
C. B.
Arnold
, and
E.
Beaurepaire
, “
Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens
,”
Opt. Lett.
34
,
1684
1686
(
2009
).
16.
D.
Koyama
,
R.
Isago
, and
K.
Nakamura
, “
Compact, high-speed variable-focus liquid lens using acoustic radiation force
,”
Opt. Express
18
,
25158
25169
(
2010
).
17.
D.
Koyama
,
R.
Isago
, and
K.
Nakamura
, “
Liquid lens using acoustic radiation force
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
596
602
(
2011
).
18.
D.
Koyama
,
R.
Isago
, and
K.
Nakamura
, “
High-speed focus scanning by an acoustic variable-focus liquid lens
,”
Jpn. J. Appl. Phys.
50
,
07HE26
07HE21–5
(
2011
).
19.
D.
Koyama
,
R.
Isago
, and
K.
Nakamura
, “
Three-dimensional variable-focus liquid lens using acoustic radiation force
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
2720
2726
(
2011
).
20.
D.
Koyama
,
R.
Isago
, and
K.
Nakamura
, “
Ultrasonic variable-focus optical lens using viscoelastic material
,”
Appl. Phys. Lett.
100
,
091102
(
2012
).
21.
D.
Koyama
,
M.
Hatanaka
,
K.
Nakamura
, and
M.
Matsukawa
, “
Ultrasonic optical lens array with variable focal length and pitch
,”
Opt. Lett.
37
,
5256
5258
(
2012
).
22.
D.
Koyama
,
Y.
Kashihara
,
M.
Hatanaka
,
K.
Nakamura
, and
M.
Matsukawa
, “
Movable optical lens array using ultrasonic vibration
,”
Sens. Act. A, Phys.
237
,
35
40
(
2016
).
23.
Y.
Shimizu
,
D.
Koyama
,
M.
Fukui
,
A.
Emoto
,
K.
Nakamura
, and
M.
Matsukawa
, “
Ultrasound liquid crystal lens
,”
Appl. Phys. Lett.
112
,
161104
(
2018
).
24.
G.
Hertz
and
H.
Mende
, “
Der Schallstrahlungsdruck in Flüssigkeiten
,”
Z. Phys.
114
,
354
367
(
1939
).
25.
L. D.
Rozenberg
and
L. O.
Makarov
, “
On the causes of ultrasonic distension of liquid surfaces
,”
Sov. Phys. Dokl.
2
,
230
231
(
1958
).
26.
B.
Chu
and
E.
Apfel
, “
Acoustic radiation pressure produced by a beam of sound
,”
J. Acoust. Soc. Am.
72
,
1673
1687
(
1982
).
27.
Z.
Wei
,
J. H.
Yang
,
J.
Zhou
,
F.
Xu
,
M.
Zrínyi
,
P. H.
Dussault
,
Y.
Osada
, and
Y. M.
Chen
, “
Self-healing gels based on constitutional dynamic chemistry and their potential applications
,”
Chem. Soc. Rev.
43
,
8114
8131
(
2014
).
28.
X.
Yu
,
L.
Chen
,
M.
Zhang
, and
T.
Yi
, “
Low-molecular-mass gels responding to ultrasound and mechanical stress: Towards self-healing materials
,”
Chem. Soc. Rev.
43
,
5346
5371
(
2014
).
29.
J.
Paulusse
,
D.
van Beek
, and
R.
Sijibesma
, “
Reversible switching of the sol-gel transition with ultrasound in rhodium(I) and iridium(I) coordination networks
,”
J. Am. Chem. Soc.
129
,
2392
2397
(
2007
).
30.
T.
Naota
and
H.
Koori
, “
Molecules that assemble by sound: An application to the instant gelation of stable organic fluids
,”
J. Am. Chem. Soc.
127
,
9324
9325
(
2005
).
31.
R. Y.
Wang
,
X. Y.
Liu
, and
J. L.
Li
, “
Engineering molecular self-assembled fibrillar networks by ultrasound
,”
Cryst. Growth Des.
9
,
3286
3291
(
2009
).
32.
K.
Masuda
,
H.
Komatsu
,
D.
Koyama
, and
M.
Matsukawa
, “
Control of the surface profile of a thixotropic fluid with ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
67
,
117
123
(
2020
).
33.
Y.
Chen
,
Y.
Wang
,
Q.
Yang
,
Y.
Liao
,
B.
Zhu
,
G.
Zhao
,
R.
Shen
,
X.
Lu
, and
S.
Qu
, “
A novel thixotropic magnesium phosphate-based bioink with excellent printability for application in 3D printing
,”
J. Mater. Chem. B
6
,
4502
4513
(
2018
).
34.
Y. S.
Pek
,
A. C. A.
Wan
,
A.
Shekaran
,
L.
Zhuo
, and
J. Y.
Ying
, “
A thixotropic nanocomposite gel for three-dimensional cell culture
,”
Nat. Nanotechnol.
3
,
671
675
(
2008
).
35.
T.
Yoshida
,
T.
Senjyu
,
M.
Nakamura
,
N.
Urasaki
,
H.
Sekine
, and
T.
Funabashi
, “
Position control of ultrasonic motors using dead-zone compensation with fuzzy neural network
,”
Electr. Power Compon. Syst.
34
,
1253
1266
(
2006
).
36.
T.
Ozdemir
,
A.
Saglam
,
F. B.
Ozdemir
, and
A. Ü.
Keskiner
, “
The evaluation of spectral transmittance of optical eye-lenses
,”
Optik
127
,
2062
2068
(
2016
).
You do not currently have access to this content.