Acoustic handling of nanoparticles in resonating acoustofluidic devices is often impeded by the presence of acoustic streaming. For micrometer-sized acoustic chambers, this acoustic streaming is typically driven by viscous shear in the thin acoustic boundary layer near the fluid-solid interface. Alternating current (ac) electroosmosis is another boundary-driven streaming phenomenon routinely used in microfluidic devices for the handling of particle suspensions in electrolytes. Here, we study how streaming can be suppressed by combining ultrasound acoustics and ac electroosmosis. Based on a theoretical analysis of the electrokinetic problem, we are able to compute numerically a form of the electrical potential at the fluid-solid interface, which is suitable for suppressing the typical acoustic streaming pattern associated with a standing acoustic half-wave. In the linear regime, we even derive an analytical expression for the electroosmotic slip velocity at the fluid-solid interface and use this as a guiding principle for developing models in the experimentally more relevant nonlinear regime that occurs at elevated driving voltages. We present simulation results for an acoustofluidic device, showing how implementing a suitable ac electroosmosis results in a suppression of the resulting electroacoustic streaming in the bulk of the device by 2 orders of magnitude.

1.
F.
Petersson
,
L.
Åberg
,
A. M.
Swärd-Nilsson
, and
T.
Laurell
, “
Free flow acoustophoresis: Microfluidic-based mode of particle and cell separation
,”
Anal. Chem.
79
(
14
),
5117
5123
(
2007
).
2.
O.
Manneberg
,
B.
Vanherberghen
,
J.
Svennebring
,
H. M.
Hertz
,
B.
Önfelt
, and
M.
Wiklund
, “
A three-dimensional ultrasonic cage for characterization of individual cells
,”
Appl. Phys. Lett.
93
(
6
),
063901
063903
(
2008
).
3.
X.
Ding
,
Z.
Peng
,
S.-C. S.
Lin
,
M.
Geri
,
S.
Li
,
P.
Li
,
Y.
Chen
,
M.
Dao
,
S.
Suresh
, and
T. J.
Huang
, “
Cell separation using tilted-angle standing surface acoustic waves
,”
Proc. Natl. Acad. Sci. U.S.A.
111
(
36
),
12992
12997
(
2014
).
4.
B.
Hammarström
,
T.
Laurell
, and
J.
Nilsson
, “
Seed particle enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems
,”
Lab Chip
12
,
4296
4304
(
2012
).
5.
M.
Evander
,
O.
Gidlöf
,
B.
Olde
,
D.
Erlinge
, and
T.
Laurell
, “
Non-contact acoustic capture of microparticles from small plasma volumes
,”
Lab Chip
15
,
2588
2596
(
2015
).
6.
D. J.
Collins
,
C.
Devendran
,
Z.
Ma
,
J. W.
Ng
,
A.
Neild
, and
Y.
Ai
, “
Acoustic tweezers via sub-time-of-flight regime surface acoustic waves
,”
Sci. Adv.
2
(
7
),
e1600089
(
2016
).
7.
H. G.
Lim
,
Y.
Li
,
M.-Y.
Lin
,
C.
Yoon
,
C.
Lee
,
H.
Jung
,
R. H.
Chow
, and
K. K.
Shung
, “
Calibration of trapping force on cell-size objects from ultrahigh-frequency single-beam acoustic tweezer
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
63
(
11
),
1988
1995
(
2016
).
8.
D.
Baresch
,
J.-L.
Thomas
, and
R.
Marchiano
, “
Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical tweezers
,”
Phys. Rev. Lett.
116
,
024301
(
2016
).
9.
P.
Augustsson
,
C.
Magnusson
,
M.
Nordin
,
H.
Lilja
, and
T.
Laurell
, “
Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis
,”
Anal. Chem.
84
(
18
),
7954
7962
(
2012
).
10.
M.
Antfolk
,
C.
Magnusson
,
P.
Augustsson
,
H.
Lilja
, and
T.
Laurell
, “
Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells
,”
Anal. Chem.
87
(
18
),
9322
9328
(
2015
).
11.
M.
Antfolk
,
P. B.
Muller
,
P.
Augustsson
,
H.
Bruus
, and
T.
Laurell
, “
Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis
,”
Lab Chip
14
,
2791
2799
(
2014
).
12.
S.
Li
,
F.
Ma
,
H.
Bachman
,
C. E.
Cameron
,
X.
Zeng
, and
T. J.
Huang
, “
Acoustofluidic bacteria separation
,”
J. Micromech. Microeng.
27
(
1
),
015031
(
2017
).
13.
P.
Augustsson
,
J. T.
Karlsen
,
H.-W.
Su
,
H.
Bruus
, and
J.
Voldman
, “
Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping
,”
Nat. Commun.
7
,
11556
(
2016
).
14.
L. V.
King
, “
On the acoustic radiation pressure on spheres
,”
Proc. R. Soc. Lond. Ser. A
147
(
861
),
212
240
(
1934
).
15.
K.
Yosioka
and
Y.
Kawasima
, “
Acoustic radiation pressure on a compressible sphere
,”
Acustica
5
,
167
173
(
1955
).
16.
A. A.
Doinikov
, “
Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. 1. General formula
,”
J. Acoust. Soc. Am.
101
(
2
),
713
721
(
1997
).
17.
M.
Settnes
and
H.
Bruus
, “
Forces acting on a small particle in an acoustical field in a viscous fluid
,”
Phys. Rev. E
85
,
016327
(
2012
).
18.
J. T.
Karlsen
and
H.
Bruus
, “
Forces acting on a small particle in an acoustical field in a thermoviscous fluid
,”
Phys. Rev. E
92
,
043010
(
2015
).
19.
P. B.
Muller
,
M.
Rossi
,
A. G.
Marín
,
R.
Barnkob
,
P.
Augustsson
,
T.
Laurell
,
C. J.
Kähler
, and
H.
Bruus
, “
Ultrasound-induced acoustophoretic motion of microparticles in three dimensions
,”
Phys. Rev. E
88
(
2
),
023006
(
2013
).
20.
Lord
Rayleigh
, “
On the circulation of air observed in Kundt's tubes, and on some allied acoustical problems
,”
Philos. Trans. R. Soc. Lond.
175
,
1
21
(
1884
).
21.
H.
Schlichting
, “
Berechnung ebener periodischer Grenzeschichtströmungen
” (“Calculation of plane periodic. boundary layer streaming”),
Phys. Z.
33
,
327
335
(
1932
).
22.
P.
Westervelt
, “
The theory of steady rotational flow generated by a sound field
,”
J. Acoust. Soc. Am.
25
(
1
),
60
67
(
1953
).
23.
W. L.
Nyborg
, “
Acoustic streaming near a boundary
,”
J. Acoust. Soc. Am.
30
(
4
),
329
339
(
1958
).
24.
P. B.
Muller
,
R.
Barnkob
,
M. J. H.
Jensen
, and
H.
Bruus
, “
A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces
,”
Lab Chip
12
,
4617
4627
(
2012
).
25.
R.
Barnkob
,
P.
Augustsson
,
T.
Laurell
, and
H.
Bruus
, “
Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane
,”
Phys. Rev. E
86
,
056307
(
2012
).
26.
C.
Lee
and
T.
Wang
, “
Near-boundary streaming around a small sphere due to 2 orthogonal standing waves
,”
J. Acoust. Soc. Am.
85
(
3
),
1081
1088
(
1989
).
27.
J.
Vanneste
and
O.
Bühler
, “
Streaming by leaky surface acoustic waves
,”
Proc. R. Soc. A
467
(
2130
),
1779
1800
(
2011
).
28.
J. S.
Bach
and
H.
Bruus
, “
Theory of pressure acoustics with viscous boundary layers and streaming in curved elastic cavities
,”
J. Acoust. Soc. Am.
144
,
766
784
(
2018
).
29.
C.
Eckart
, “
Vortices and streams caused by sound waves
,”
Phys. Rev.
73
,
68
76
(
1948
).
30.
J. S.
Bach
and
H.
Bruus
, “
Bulk-driven acoustic streaming at resonance in closed microcavities
,”
Phys. Rev. E
100
,
023104
(
2019
).
31.
T. M.
Squires
and
M. Z.
Bazant
, “
Induced-charge electro-osmosis
,”
J. Fluid Mech.
509
(
1
),
217
252
(
2004
).
32.
A.
Ajdari
, “
Pumping liquids using asymmetric electrode arrays
,”
Phys. Rev. E
61
(
1
),
R45
R48
(
2000
).
33.
A. B. D.
Brown
,
C. G.
Smith
, and
A. R.
Rennie
, “
Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes
,”
Phys. Rev. E
63
(
1
),
016305
(
2000
).
34.
M. M.
Gregersen
,
L. H.
Olesen
,
A.
Brask
,
M. F.
Hansen
, and
H.
Bruus
, “
Flow reversal at low voltage and low frequency in a microfabricated ac electrokinetic pump
,”
Phys. Rev. E
76
(
5
),
056305
(
2007
).
35.
M.
Wiklund
,
P.
Spégel
,
S.
Nilsson
, and
H. M.
Hertz
, “
Ultrasonic-trap-enhanced selectivity in capillary electrophoresis
,”
Ultrasonics
41
(
4
),
329
333
(
2003
).
36.
N. R.
Skov
,
J. S.
Bach
,
B. G.
Winckelmann
, and
H.
Bruus
, “
3D modeling of acoustofluidics in a liquid-filled cavity including streaming, viscous boundary layers, surrounding solids, and a piezoelectric transducer
,”
AIMS Math.
4
,
99
111
(
2019
).
37.
P. B.
Muller
and
H.
Bruus
, “
Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels
,”
Phys. Rev. E
90
(
4
),
043016
(
2014
).
38.
P. B.
Muller
and
H.
Bruus
, “
Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels
,”
Phys. Rev. E
92
,
063018
(
2015
).
39.
R.
Zana
and
E. B.
Yeager
, “
Ultrasonic vibration potentials
,” in
Modern Aspects of Electrochemistry
, edited by
J. O.
Bockris
,
B. E.
Conway
, and
R. E.
White
(
Springer US
,
Boston, MA
,
1982
), pp.
1
60
.
40.
J.
Voldman
, “
Electrical forces for microscale cell manipulation
,”
Annu. Rev. Biomed. Eng.
8
(
1
),
425
454
(
2006
).
41.
See supplementary material at https://www.scitation.org/doi/suppl/10.1121/10.0005051 for details on the values of the material parameters and on the COMSOL mesh convergence study.
42.
J. S.
Bach
and
H.
Bruus
, “
Suppression of acoustic streaming in shape-optimized channels
,”
Phys. Rev. Lett.
124
,
214501
(
2020
).
43.
N.
Mortensen
,
L.
Olesen
,
L.
Belmon
, and
H.
Bruus
, “
Electrohydrodynamics of binary electrolytes driven by modulated surface potentials
,”
Phys. Rev. E
71
,
056306
(
2005
).
44.
M. S.
Kilic
,
M. Z.
Bazant
, and
A.
Ajdari
, “
Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations
,”
Phys. Rev. E
75
,
021503
(
2007
).
45.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C: The Art of Scientific Computing
, 2nd ed. (
Cambridge University
,
Cambridge, UK
,
2002
).
46.
COMSOL Multiphysics 5.4 (
2018
), http://www.comsol.com (Last viewed 23 April 2021).
47.
W. N.
Bodé
,
L.
Jiang
,
T.
Laurell
, and
H.
Bruus
, “
Microparticle acoustophoresis in aluminum-based acoustofluidic devices with PDMS covers
,”
Micromachines
11
(
3
),
292
(
2020
).
48.
B. J.
Kirby
and
E. F.
Hasselbrink
, Jr.
, “
Zeta potential of microfluidic substrates: 2. Data for polymers
,”
Electrophoresis
25
(
2
),
203
213
(
2004
).
49.
L. H.
Olesen
,
H.
Bruus
, and
A.
Ajdari
, “
ac electrokinetic micropumps: The effect of geometrical confinement, faradaic current injection, and nonlinear surface capacitance
,”
Phys. Rev. E
73
(
5
),
056313
(
2006
).
50.
P.
Augustsson
,
R.
Barnkob
,
S. T.
Wereley
,
H.
Bruus
, and
T.
Laurell
, “
Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization
,”
Lab Chip
11
(
24
),
4152
4164
(
2011
).

Supplementary Material

You do not currently have access to this content.