With the advent of additive manufacturing, lattice structures can be printed with precisely controlled geometries. In this way, it is possible to realize porous samples with specific acoustic and thermoacoustic characteristics. However, to this aim and prior to the manufacturing process, it is fundamental to have a design tool that can predict the behaviour of the lattices. In the literature, Luu, Perrot, and Panneton [Acta Acust. United Ac. 103, 1050 (2017)] provide a model to characterize transport parameters of fibrous material with a certain fiber orientation with respect to the direction of wave propagation. In this work, finite element numerical simulations are used to improve their model in order to compute the thermoviscous functions of lattice structures composed of cylindrical struts arranged in Tetragonal Body Centred cells. New correlations for transport parameters are suggested, which are finally coupled with the semi-phenomenological model of Johnson-Champoux-Allard-Lafarge to obtain the complex density and bulk modulus of the equivalent fluid. These results are compared with the measurements carried out on two 3-dimensional-printed samples with hybrid impedance tube techniques.

1.
G. W.
Swift
and
R. M.
Keolian
, “
Thermoacoustics in pin‐array stacks
,”
J. Acoust. Soc. Am.
94
,
941
943
(
1993
).
2.
M. E.
Hayden
and
G. W.
Swift
, “
Thermoacoustic relaxation in a pin-array stack
,”
J. Acoust. Soc. Am.
102
,
2714
2722
(
1997
).
3.
F.
Auriemma
,
E. D.
Giulio
,
M.
Napolitano
, and
R.
Dragonetti
, “
Porous cores in small thermoacoustic devices for building applications
,”
Energies
13
,
2941
(
2020
).
4.
F.
Auriemma
and
Y.
Holovenko
, “
Performance of additive manufactured stacks in a small scale thermoacoustic engine
,” SAE Technical Paper No. 2019-01-1534 (SAE, Warrendale, PA,
2019
).
5.
F.
Auriemma
,
M.
Napolitano
,
E.
Di Giulio
, and
R.
Dragonetti
, “
Criteria for the selection of porous cores for thermoacoustic applications
,” in
Proceedings of INTER-NOISE and NOISE-CON Congress, InterNoise20
, Seoul, Korea (August 23–26,
2020
) pp.
119
126
.
6.
F.
Auriemma
and
Y.
Holovenko
, “
Use of selective laser melting for manufacturing the porous stack of a thermoacoustic engine
,”
Key Eng. Mater.
799
,
246
251
(
2019
).
7.
K. I.
Matveev
, “
Thermoacoustic energy analysis of transverse-pin and tortuous stacks at large acoustic displacements
,”
Int. J. Therm. Sci.
49
,
1019
1025
(
2010
).
8.
J. F.
Allard
and
N.
Atalla
, “
Propagation of sound in porous media
,” in
Modelling Sound Absorbing Materials
, 2nd ed. (
Wiley
,
Chichester, UK
,
2009
), Chap. 5, pp.
73
107
.
9.
M.
Barron
,
Auditorium Acoustics and Architectural Design
, 2nd ed. (
E &FN Spon
,
London, UK
,
2009
), Chap. 2, pp.
22
23
.
10.
H.
Kuttruff
,
Room Acoustics
, 5th ed. (
Spon Press
,
London, UK
,
2009
), Chap. 6, pp.
160
203
.
11.
M. L.
Munjal
,
Acoustics of Ducts and Mufflers
, 2nd ed. (
Wiley
,
Chichester, UK
,
2014
), Chap. 6, pp.
233
265
.
12.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range
,”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
).
13.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid saturated porous solid. II. High frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
14.
Z. E. A.
Fellah
,
J. Y.
Chapelon
,
S.
Berger
,
W.
Lauriks
, and
C.
Depollier
, “
Ultrasonic wave propagation in human cancellous bone: Application of Biot theory
,”
J. Acoust. Soc. Am.
116
,
61
73
(
2004
).
15.
G.
Kirchhoff
, “
Ueber den Einflufs der Wärmeleitung in einem gase auf die schallbewegung
” (“On the influence of heat conduction in a gas on sound excitation”),
Ann. Phys. Chem.
210
,
177
193
(
1868
).
16.
J. W.
Strutt (Lord Rayleigh)
,
Theory of Sound
, 2nd ed. (
Dover
,
New York
,
1945
),
Vol. II
, pp.
347
348
.
17.
C.
Zwikker
and
C. W.
Kosten
,
Sound Absorbing Materials
(
Elsevier
,
Amsterdam
,
1949
), Chap. 2.
18.
N.
Rott
, “
Damped and thermally driven acoustic oscillations in wide and narrow tubes
,”
J. Appl. Mathematics Phys. (ZAMP)
20
,
230
243
(
1969
).
19.
J. W.
Strutt (Lord Rayleigh)
, “
The explanation of certain acoustical phenomena
,”
Nature
18
,
319
321
(
1878
).
20.
M. R.
Stinson
and
Y.
Champoux
, “
Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries
,”
J. Acoust. Soc. Am.
91
,
685
695
(
1992
).
21.
W. P.
Arnott
,
H. E.
Bass
, and
R.
Raspet
, “
General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections
,”
J. Acoust. Soc. Am.
90
,
3228
3237
(
1991
).
22.
H.
Roh
,
R.
Raspet
, and
H. E.
Bass
, “
Parallel capillary-tube-based extension of thermoacoustic theory for random porous media
,”
J. Acoust. Soc. Am.
121
,
1413
1422
(
2007
).
23.
K.
Attenborough
, “
Acoustical characteristics of rigid fibrous absorbents and granular materials
,”
J. Acoust. Soc. Am.
73
,
785
799
(
1983
).
24.
J. F.
Allard
and
Y.
Champoux
, “
New empirical equations for sound propagation in rigid frame fibrous materials
,”
J. Acoust. Soc. Am.
91
,
3346
3353
(
1992
).
25.
H. T.
Luu
,
C.
Perrot
, and
R.
Panneton
, “
Influence of porosity, fiber radius and fiber orientation on the transport and acoustic properties of random fiber structures
,”
Acta Acust. united Ac.
103
,
1050
1063
(
2017
).
26.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
27.
D.
Lafarge
,
P.
Lemarinier
,
J. F.
Allard
, and
V.
Tarnow
, “
Dynamic compressibility of air in porous structures at audible frequencies
,”
J. Acoust. Soc. Am.
102
,
1995
2006
(
1997
).
28.
V.
Tarnow
, “
Compressibility of air in fibrous materials
,”
J. Acoust. Soc. Am.
99
,
3010
3017
(
1996
).
29.
C.
Jensen
and
R.
Raspet
, “
Thermoacoustic properties of fibrous materials
,”
J. Acoust. Soc. Am.
127
,
3470
3484
(
2010
).
30.
D. K.
Wilson
, “
Relaxation-matched modelling of propagation through porous media, including fractal pore structure
,”
J. Acoust. Soc. Am.
94
,
1136
1145
(
1993
).
31.
G. W.
Swift
, “
Thermoacoustic engines
,”
J. Acoust. Soc. Am.
84
,
1145
1180
(
1988
).
32.
R.
Dragonetti
,
M.
Napolitano
,
S.
Di Filippo
, and
R.
Romano
, “
Modeling energy conversion in a tortuous stack for thermoacoustic applications
,”
Appl. Therm. Eng.
103
,
233
242
(
2016
).
33.
O.
Doutres
,
Y.
Salissou
,
N.
Atalla
, and
R.
Panneton
, “
Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three microphones impedance tube
,”
Appl. Acoust.
71
,
506
509
(
2010
).
34.
B. H.
Song
and
S.
Bolton
, “
A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials
,”
J. Acoust. Soc. Am.
107
,
1131
1152
(
2000
).
35.
R.
Dragonetti
,
C.
Ianniello
, and
R.
Romano
, “
The evaluation of intrinsic non-acoustic parameters of polyester fibrous materials by an optimization procedure
,” in
Proceedings of 6th European Conference on Noise Control EURONOISE 2006
, Tampere, Finland (May 30–June 1,
2006
), pp.
1
6
.
36.
V.
Langlois
,
A.
Kaddami
,
O.
Pitois
, and
C.
Perrot
, “
Acoustics of monodisperse open-cell foam: An experimental and numerical parametric study
,”
J. Acoust. Soc. Am.
148
,
1767
1778
(
2020
).
37.
A.
Petculescu
and
L. A.
Wilen
, “
Lumped-element technique for the measurement of complex density
,”
J. Acoust. Soc. Am.
110
,
1950
1957
(
2001
).
38.
G.
Petculescu
and
L. A.
Wilen
, “
Thermoacoustics in a single pore with an applied temperature gradient
,”
J. Acoust. Soc. Am.
106
,
688
694
(
1999
).
39.
V.
Tarnow
, “
Measurement of sound propagation in glass wool
,”
J. Acoust. Soc. Am.
97
,
2272
2281
(
1995
).
40.
B.
Asgharian
and
K. I.
Matveev
, “
Influence of finite heat capacity of solid pins and their spacing on thermoacoustic performance of transverse-pin stacks
,”
Appl. Therm. Eng.
62
,
593
598
(
2014
).
You do not currently have access to this content.