Nonlinear ultrasound (NLU) is a nondestructive evaluation method that is sensitive to damage at length scales well below those detected by conventional ultrasonic methods. Micro- and nano-scale damage correlates to the second harmonic generated by a sinusoidal wave as it propagates through a material. However, NLU measurements are plagued by experimentally-induced nonlinearities and require careful calibrations that have limited them to laboratory measurements. Here, we propose the use of additive manufacturing (AM) phononic materials with ultrasonic filtering properties to reduce extraneous nonlinearities. To do this, finite element simulations were first used to design and analyze phononic materials to transmit an ultrasonic wave but forbid the propagation of its second harmonic. Phononic filters were then fabricated with AM and experimentally characterized in the ultrasonic regime. Results show that the phononic materials behave as low-pass filters, where the cut-off frequency is controlled by the unit cell geometry and also influenced by defects and microstructure from the AM process. Finally, the phononic filters were incorporated into NLU measurements, demonstrating the removal of extraneous nonlinearities and thus better isolating second harmonic generation in a test sample. This work suggests that AM phononic materials could improve NLU and other nondestructive evaluation measurements.

1.
K. H.
Matlack
,
A.
Bauhofer
,
S.
Krödel
,
A.
Palermo
, and
C.
Daraio
, “
Composite 3D-printed meta-structures low-frequency broadband vibration absorption
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
8386
8390
(
2016
).
2.
M.
Ruzzene
and
F.
Scarpa
, “
Directional and band-gap behavior of periodic auxetic lattices
,”
Phys. Status Solidi B
242
(
3
),
665
680
(
2005
).
3.
I.
Arretche
and
K. H.
Matlack
, “
On the interrelationship between static and vibration mitigation properties of architected metastructures
,”
Front. Mater.
5
,
1
16
(
2018
).
4.
M. I.
Hussein
,
M. J.
Leamy
, and
M.
Ruzzene
, “
Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook
,”
Appl. Mech. Rev.
66
(
4
),
040802
(
2014
).
5.
P. A.
Deymier
,
Acoustic Metamaterials and Phononic Crystals
(
Springer
,
Berlin-Heidelberg
,
2013
).
6.
H.
Pichard
,
O.
Richoux
, and
J.-P.
Groby
, “
Experimental demonstrations in audible frequency range of band gap tunability and negative refraction in two-dimensional sonic crystal
,”
J. Acoust. Soc. Am.
132
(
4
),
2816
2822
(
2012
).
7.
N.
Kaina
,
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
, “
Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials
,”
Nature
525
(
7567
),
77
81
(
2015
).
8.
H. J.
Lee
,
J.-R.
Lee
,
S. H.
Moon
,
T.-J.
Je
,
E.-C.
Jeon
,
K.
Kim
, and
Y. Y.
Kim
, “
Off-centered double-slit metamaterial for elastic wave polarization anomaly
,”
Sci. Rep.
7
(
1
),
15378
(
2017
).
9.
G. U.
Patil
,
A. B.
Shedge
, and
K. H.
Matlack
, “
3D auxetic lattice materials for anomalous elastic wave polarization
,”
Appl. Phys. Lett.
115
(
9
),
091902
(
2019
).
10.
G. U.
Patil
and
K. H.
Matlack
, “
Effective property evaluation and analysis of three-dimensional periodic lattices and composites through Bloch-wave homogenization
,”
J. Acoust. Soc. Am.
145
(
3
),
1259
1269
(
2019
).
11.
S.
Laureti
,
D. A.
Hutchins
,
L. A. J.
Davis
,
S. J.
Leigh
, and
M.
Ricci
, “
High-resolution acoustic imaging at low frequencies using 3D-printed metamaterials
,”
AIP Adv.
6
(
12
),
121701
(
2016
).
12.
I.
Arretche
and
K. H.
Matlack
, “
Experimental testing of vibration mitigation in 3D-printed architected metastructures
,”
J. Appl. Mech.
86
(
11
),
111008
(
2019
).
13.
C. D.
Pierce
,
C. L.
Willey
,
V. W.
Chen
,
J. O.
Hardin
,
J. D.
Berrigan
,
A. T.
Juhl
, and
K. H.
Matlack
, “
Adaptive elastic metastructures from magneto-active elastomers
,”
Smart Mater. Struct.
29
(
6
),
065004
(
2020
).
14.
S.
Krödel
and
C.
Daraio
, “
Microlattice metamaterials for tailoring ultrasonic transmission with elastoacoustic hybridization
,”
Phys. Rev. Appl.
6
(
6
),
064005
(
2016
).
15.
T. S.
Srivatsan
,
T. S.
Sudarshan
, and
K.
Manigandan
, Manufacturing Technizues for Materials: Engineering and Engineered (CRC Press, Boca Raton, FL, 2018), pp. 51–65.
16.
S.
Kumar
and
H. P.
Lee
, “
The present and future role of acoustic metamaterials for architectural and urban noise mitigations
,”
Acoustics
1
(
3
),
590
607
(
2019
).
17.
J. H.
Cantrell
, “
Crystalline structure and symmetry dependence of acoustic nonlinearity parameters
,”
J. Appl. Phys.
76
(
6
),
3372
3380
(
1994
).
18.
K. H.
Matlack
,
J. Y.
Kim
,
L. J.
Jacobs
, and
J.
Qu
, “
Review of second harmonic generation measurement techniques for material state determination in metals
,”
J. Nondestruct. Eval.
34
(
1
),
273
(
2015
).
19.
J. H.
Cantrell
and
W. T.
Yost
, “
Determination of precipitate nucleation and growth rates from ultrasonic harmonic generation
,”
Appl. Phys. Lett.
77
(
13
),
1952
1954
(
2000
).
20.
T.
Kundu
,
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
(
Springer
,
New York
,
2018
).
21.
J. H.
Cantrell
and
W. T.
Yost
, “
Nonlinear ultrasonic characterization of fatigue microstructures
,”
Int. J. Fatigue
23
,
487
490
(
2001
).
22.
D. J.
Barnard
,
G. E.
Dace
, and
O.
Buck
, “
Acoustic harmonic generation due to thermal embrittlement of Inconel 718
,”
J. Nondestruct. Eval.
16
(
2
),
67
75
(
1997
).
23.
D. T.
Zeitvogel
,
K. H.
Matlack
,
J. Y.
Kim
,
L. J.
Jacobs
,
P. M.
Singh
, and
J.
Qu
, “
Characterization of stress corrosion cracking in carbon steel using nonlinear Rayleigh surface waves
,”
NDT E Int.
62
,
144
152
(
2014
).
24.
K. H.
Matlack
,
J.-Y.
Kim
,
J. J.
Wall
,
J.
Qu
, and
L. J.
Jacobs
, “
Nonlinear ultrasonic characterization of radiation damage using Charpy impact specimen
,” in
STP1576
(
ASTM
,
West Conshohocken, PA
,
2014
), pp.
1
17
.
25.
J.-Y.
Kim
,
L. J.
Jacobs
,
J.
Qu
, and
J. W.
Littles
, “
Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves
,”
J. Acoust. Soc. Am.
120
(
3
),
1266
1273
(
2006
).
26.
D.
Torello
,
N.
Selby
,
J. Y.
Kim
,
J.
Qu
, and
L. J.
Jacobs
, “
Determination of absolute material nonlinearity with air-coupled ultrasonic receivers
,”
Ultrasonics
81
,
107
117
(
2017
).
27.
A.
Romer
,
J. Y.
Kim
,
J.
Qu
, and
L. J.
Jacobs
, “
The second harmonic generation in reflection mode: An analytical, numerical and experimental study
,”
J. Nondestruct. Eval.
35
(
1
),
1
10
(
2016
).
28.
K. H.
Matlack
,
J. Y.
Kim
,
J. J.
Wall
,
J.
Qu
,
L. J.
Jacobs
, and
M. A.
Sokolov
, “
Sensitivity of ultrasonic nonlinearity to irradiated, annealed, and re-irradiated microstructure changes in RPV steels
,”
J. Nucl. Mater.
448
,
26
32
(
2014
).
29.
G.
Kim
,
G.
Loreto
,
J. Y.
Kim
,
K. E.
Kurtis
,
J. J.
Wall
, and
L. J.
Jacobs
, “
In situ nonlinear ultrasonic technique for monitoring microcracking in concrete subjected to creep and cyclic loading
,”
Ultrasonics
88
,
64
71
(
2018
).
30.
M.
Miniaci
,
A. S.
Gliozzi
,
B.
Morvan
,
A.
Krushynska
,
F.
Bosia
,
M.
Scalerandi
, and
N. M.
Pugno
, “
Proof of concept for an ultrasensitive technique to detect and localize sources of elastic nonlinearity using phononic crystals
,”
Phys. Rev. Lett.
118
(
21
),
214301
(
2017
).
31.
A. S.
Gliozzi
,
M.
Miniaci
,
F.
Bosia
,
N. M.
Pugno
, and
M.
Scalerandi
, “
Metamaterials-based sensor to detect and locate nonlinear elastic sources
,”
Appl. Phys. Lett.
107
(
16
),
161902
(
2015
).
32.
A.
Mostavi
,
M.
Kabir
, and
D.
Ozevin
, “
The integration of superlattices and immersion nonlinear ultrasonics to enhance damage detection threshold
,”
Appl. Phys. Lett.
111
(
20
),
201905
(
2017
).
33.
Y.
Tian
,
Y.
Shen
,
D.
Rao
, and
W.
Xu
, “
Metamaterial improved nonlinear ultrasonics for fatigue damage detection
,”
Smart Mater. Struct.
28
(
7
),
075038
(
2019
).
34.
J.
Xiong
,
D.
Gu
,
H.
Chen
,
D.
Dai
, and
Q.
Shi
, “
Structural optimization of re-entrant negative Poisson's ratio structure fabricated by selective laser melting
,”
Mater. Des.
120
,
307
316
(
2017
).
35.
W.
van Grunsven
,
E.
Hernandez-Nava
,
G.
Reilly
, and
R.
Goodall
, “
Fabrication and mechanical characterisation of titanium lattices with graded porosity
,”
Metals
4
(
3
),
401
409
(
2014
).
36.
C.
Bonatti
and
D.
Mohr
, “
Large deformation response of additively-manufactured FCC metamaterials: From octet truss lattices towards continuous shell mesostructures
,”
Int. J. Plast.
92
,
122
147
(
2017
).
37.
O.
Dace
,
G. E.
Thompson
,
R. B.
Brasche
,
L. J. H.
Rehbein
, and
D. K.
Buck
, “
Nonlinear acoustics, a technique to determine microstructural changes in materials
,”
Rev. Prog. Quant. Nondestruct. Eval.
10
,
1685
1692
(
1991
).
38.
P. B.
Nagy
, “
Fatigue damage assessment by nonlinear ultrasonic materials characterization
,”
Ultrasonics
36
,
375
381
(
1998
).
39.
Y.
Hinuma
,
G.
Pizzi
,
Y.
Kumagai
,
F.
Oba
, and
I.
Tanaka
, “
Band structure diagram paths based on crystallography
,”
Comput. Mater. Sci.
128
,
140
184
(
2017
).
40.
T.
DebRoy
,
H. L.
Wei
,
J. S.
Zuback
,
T.
Mukherjee
,
J. W.
Elmer
,
J. O.
Milewski
,
A. M.
Breese
,
A.
Wilson-Heid
,
A.
De
, and
W.
Zhang
, “
Additive manufacturing of metallic components – Process, structure and properties
,”
Prog. Mater. Sci.
92
,
112
224
(
2018
).
41.
A.
Bellotti
,
J. Y.
Kim
,
J. E.
Bishop
,
B. H.
Jared
,
D.
Susan
, and
L. J.
Jacobs
, “
Nonlinear ultrasonic technique for the quantification of dislocation density in additive materials
,”
AIP Conf. Proc.
2102
,
0020040
(
2019
).
42.
I.
Grinberg
,
A. F.
Vakakis
, and
O. V.
Gendelman
, “
Acoustic diode: Wave non-reciprocity in nonlinearly coupled waveguides
,”
Wave Motion
83
,
49
66
(
2018
).
43.
K. H.
Beck
, “
Correction for use of ultrasonic calibration standards of attenuation and impedance different than the test material
,”
Mater. Eval.
69
(
3
),
401
409
(
2011
).
44.
K.
Scott
,
J. Y.
Kim
, and
L. J.
Jacobs
, “
Signal processing methods for second harmonic generation in thin specimens
,”
NDT&E Int.
95
,
57
64
(
2018
).
45.
W. T.
Yost
and
J. H.
Cantrell
, “
Anomalous nonlinearity parameters of solids at low acoustic drive amplitudes
,”
Appl. Phys. Lett.
94
(
2
),
021905
(
2009
).
46.
X.
Zheng
,
W.
Smith
,
J.
Jackson
,
B.
Moran
,
H.
Cui
,
D.
Chen
,
J.
Ye
,
N.
Fang
,
N.
Rodriguez
,
T.
Weisgraber
, and
C. M.
Spadaccini
, “
Multiscale metallic metamaterials
,”
Nat. Mater.
15
(
10
),
1100
1106
(
2016
).
You do not currently have access to this content.