Relative fundamental frequency (RFF) is a promising assessment technique for vocal pathologies. Herein, we explore the underlying laryngeal factors dictating RFF behaviours during phonation offset. To gain physical insights, we analyze a simple impact oscillator model and follow that with a numerical study using the well-established body-cover model of the vocal folds (VFs). Study of the impact oscillator suggests that the observed decrease in fundamental frequency during offset is due, at least in part, to the increase in the neutral gap between the VFs during abduction and the concomitant decrease in collision forces. Moreover, the impact oscillator elucidates a correlation between sharper drops in RFF and increased stiffness of the VFs, supporting experimental RFF studies. The body-cover model study further emphasizes the correlation between the drops in RFF and collision forces. The numerical analysis also illustrates the sensitivity of RFF to abduction initiation time relative to the phase of the phonation cycle, and the abduction period length. In addition, the numerical simulations display the potential role of the cricothyroid muscle to mitigate the RFF reduction. Last, simplified models of phonotraumatic vocal hyperfunction are explored, demonstrating that the observed sharper drops in RFF are associated with increased pre-offset collision forces.

1.
Berry
,
D. A.
, and
Titze
,
I. R.
(
1996
). “
Normal modes in a continuum model of vocal fold tissues
,”
J. Acoust. Soc. Am.
100
(
5
),
3345
3354
.
2.
Diaz-Cadiz
,
M.
,
McKenna
,
V. S.
,
Vojtech
,
J. M.
, and
Stepp
,
C. E.
(
2019
). “
Adductory vocal fold kinematic trajectories during conventional versus high-speed videoendoscopy
,”
J. Speech Lang. Hear. Res.
62
,
1685
1706
.
3.
Erath
,
B. D.
,
Zanartu
,
M.
,
Stewart
,
K. C.
,
Plesniak
,
M. W.
,
Sommer
,
D. E.
, and
Peterson
,
S. D.
(
2013
). “
A review of lumped-element models of voiced speech
,”
Speech Commun.
55
(
5
),
667
690
.
4.
Espinoza
,
V. M.
,
Zañartu
,
M.
,
Van Stan
,
J. H.
,
Mehta
,
D. D.
, and
Hillman
,
R. E.
(
2017
). “
Glottal aerodynamic measures in women with phonotraumatic and nonphonotraumatic vocal hyperfunction
,”
J. Speech Lang. Hear. Res.
60
(
8
),
2159
2169
.
5.
Galindo
,
G. E.
,
Peterson
,
S. D.
,
Erath
,
B. D.
,
Castro
,
C.
,
Hillman
,
R. E.
, and
Zañartu
,
M.
(
2017
). “
Modeling the pathophysiology of phonotraumatic vocal hyperfunction with a triangular glottal model of the vocal folds
,”
J. Speech Lang. Hear. Res.
60
(
9
),
2452
2471
.
6.
Galindo
,
G. E.
,
Zanartu
,
M.
, and
Yuz
,
J. I.
(
2014
). “
A discrete-time model for the vocal folds
,” in
Proceedings of IEEE Engineering in Medicine and Biology Society International Student Conference
, pp.
74
77
.
7.
Goberman
,
A. M.
, and
Blomgren
,
M.
(
2008
). “
Fundamental frequency change during offset and onset of voicing in individuals with Parkinson disease
,”
J. Voice
22
(
2
),
178
191
.
8.
Grace
,
I.
, and
Ibrahim
,
R.
(
2008
). “
Modelling and analysis of ship roll oscillations interacting with stationary icebergs
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
222
(
10
),
1873
1884
.
9.
Hadwin
,
P. J.
,
Galindo
,
G. E.
,
Daun
,
K. J.
,
Zañartu
,
M.
,
Erath
,
B. D.
,
Cataldo
,
E.
, and
Peterson
,
S. D.
(
2016
). “
Non-stationary Bayesian estimation of parameters from a body cover model of the vocal folds
,”
J. Acoust. Soc. Am.
139
(
5
),
2683
2696
.
10.
Hanson
,
H. M.
(
2009
). “
Effects of obstruent consonants on fundamental frequency at vowel onset in English
,”
J. Acoust. Soc. Am.
125
(
1
),
425
441
.
11.
Heller Murray
,
E. S.
,
Lien
,
Y.-A. S.
,
Van Stan
,
J. H.
,
Mehta
,
D. D.
,
Hillman
,
R. E.
,
Pieter Noordzij
,
J.
, and
Stepp
,
C. E.
(
2017
). “
Relative fundamental frequency distinguishes between phonotraumatic and non-phonotraumatic vocal hyperfunction
,”
J. Speech Lang. Hear. Res.
60
(
6
),
1507
1515
.
12.
Heller Murray
,
E. S.
,
Segina
,
R. K.
,
Woodnorth
,
G. H.
, and
Stepp
,
C. E.
(
2020
). “
Relative fundamental frequency in children with and without vocal fold nodules
,”
J. Speech Lang. Hear. Res.
63
,
361
371
.
13.
Henríquez
,
P.
,
Alonso
,
J. B.
,
Ferrer
,
M. A.
,
Travieso
,
C. M.
,
Godino-Llorente
,
J. I.
, and
Díaz-de María
,
F.
(
2009
). “
Characterization of healthy and pathological voice through measures based on nonlinear dynamics
,”
IEEE Trans. Audio Speech Lang. Process.
17
(
6
),
1186
1195
.
14.
Hillman
,
R. E.
,
Holmberg
,
E. B.
,
Perkell
,
J. S.
,
Walsh
,
M.
, and
Vaughan
,
C.
(
1989
). “
Objective assessment of vocal hyperfunction: An experimental framework and initial results
,”
J. Speech Lang. Hear. Res.
32
(
2
),
373
392
.
15.
Ing
,
J.
,
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
, and
Banerjee
,
S.
(
2008
). “
Experimental study of impact oscillator with one-sided elastic constraint
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
366
(
1866
),
679
705
.
16.
Jaiswal
,
S.
(
2011
). “
Cricothyroid muscle activity at voicing transitions
,” Ph.D. thesis,
University of Iowa
,
Iowa City, IA
.
17.
Jiang
,
J. J.
, and
Titze
,
I. R.
(
1994
). “
Measurement of vocal fold intraglottal pressure and impact stress
,”
J. Voice
8
(
2
),
132
144
.
18.
Jiang
,
J. J.
,
Zhang
,
Y.
,
MacCallum
,
J.
,
Sprecher
,
A.
, and
Zhou
,
L.
(
2009
). “
Objective acoustic analysis of pathological voices from patients with vocal nodules and polyps
,”
Folia Phon. Logop.
61
(
6
),
342
349
.
19.
Jiang
,
J. J.
,
Zhang
,
Y.
, and
McGilligan
,
C.
(
2006
). “
Chaos in voice, from modeling to measurement
,”
J. Voice
20
(
1
),
2
17
.
20.
Kelly
,
J. L.
, and
Lochbaum
,
C. C.
(
1962
). “
Speech synthesis
,” in
Proceedings of the Fourth International Congress on Acoustics
.
21.
Kuo
,
J.
,
Holmberg
,
E. B.
, and
Hillman
,
R. E.
(
1999
). “
Discriminating speakers with vocal nodules using aerodynamic and acoustic features
,” in
Proceedings of the 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP99)
(IEEE, New York), Vol.
1
, pp.
77
80
.
22.
Lien
,
Y. S.
,
Calabrese
,
C. R.
,
Michener
,
C. M.
,
Heller Murray
,
E.
,
Van Stan
,
J. H.
,
Mehta
,
D. D.
,
Hillman
,
R. E.
,
Noordzij
,
J. P.
, and
Stepp
,
C. E.
(
2015
). “
Voice relative fundamental frequency via neck-skin acceleration in individuals with voice disorders
,”
J. Speech Lang. Hear. Res.
58
(
5
),
1482
1487
.
23.
Lien
,
Y. A. S.
,
Heller Murray
,
E. S.
,
Calabrese
,
C. R.
,
Michener
,
C. M.
,
Van Stan
,
J. H.
,
Mehta
,
D. D.
,
Hillman
,
R. E.
,
Noordzij
,
J. P.
, and
Stepp
,
C. E.
(
2017
). “
Validation of an algorithm for semi-automated estimation of voice relative fundamental frequency
,”
Ann. Otol. Rhinol. Laryngol.
126
(
10
),
712
716
.
24.
Liljencrants
,
J.
(
1985
). “
Speech synthesis with a reflection-type line analog
,” Ph.D. thesis,
Royal Institute of Technology
,
Stockholm, Sweden
.
25.
Lucero
,
J. C.
, and
Koenig
,
L. L.
(
2005
). “
Phonation thresholds as a function of laryngeal size in a two-mass model of the vocal folds
,”
J. Acoust. Soc. Am.
118
(
5
),
2798
2801
.
26.
McKenna
,
V. S.
,
Heller Murray
,
E. S.
,
Lien
,
Y.-A. S.
, and
Stepp
,
C. E.
(
2016
). “
The relationship between relative fundamental frequency and a kinematic estimate of laryngeal stiffness in healthy adults
,”
J. Speech Lang. Hear. Res.
59
(
6
),
1283
1294
.
27.
Nagurka
,
M.
, and
Huang
,
S.
(
2004
). “
A mass-spring-damper model of a bouncing ball
,” in
Proceedings of the 2004 American Control Conference
(IEEE, New York), Vol.
1
, pp.
499
504
.
28.
Newmark
,
N. M.
(
1959
). “
A method of computation for structural dynamics
,”
J. Eng. Mech. Div.
85
(
3
),
67
94
.
29.
Nishida
,
N.
,
Taguchi
,
A.
,
Motoyoshi
,
K.
,
Hyodo
,
M.
,
Gyo
,
K.
, and
Desaki
,
J.
(
2013
). “
Age-related changes in rat intrinsic laryngeal muscles: Analysis of muscle fibers, muscle fiber proteins, and subneural apparatuses
,”
Eur. Arch. Oto-Rhino-Laryngol.
270
(
3
),
975
984
.
30.
Nordmark
,
A. B.
(
1991
). “
Non-periodic motion caused by grazing incidence in an impact oscillator
,”
J. Sound Vib.
145
(
2
),
279
297
.
31.
Ohde
,
R. N.
(
1984
). “
Fundamental frequency as an acoustic correlate of stop consonant voicing
,”
J. Acoust. Soc. Am.
75
(
1
),
224
230
.
32.
Roubeau
,
B.
,
Chevrie-Muller
,
C.
, and
Saint Guily
,
J. L.
(
1997
). “
Electromyographic activity of strap and cricothyroid muscles in pitch change
,”
Acta Oto-laryngol.
117
(
3
),
459
464
.
33.
Senator
,
M.
(
1970
). “
Existence and stability of periodic motions of a harmonically forced impacting system
,”
J. Acoust. Soc. Am.
47
(
5B
),
1390
1397
.
34.
Shaw
,
S. W.
, and
Holmes
,
P.
(
1983
). “
A periodically forced piecewise linear oscillator
,”
J. Sound Vib.
90
(
1
),
129
155
.
35.
Smith
,
A. B.
, and
Robb
,
M. P.
(
2013
). “
Factors underlying short-term fundamental frequency variation during vocal onset and offset
,”
Speech Lang. Hear.
16
(
4
),
208
214
.
36.
Steinecke
,
I.
, and
Herzel
,
H.
(
1995
). “
Bifurcations in an asymmetric vocal-fold model
,”
J. Acoust. Soc. Am.
97
(
3
),
1874
1884
.
37.
Stepp
,
C. E.
,
Hillman
,
R. E.
, and
Heaton
,
J. T.
(
2010
). “
The impact of vocal hyperfunction on relative fundamental frequency during voicing offset and onset
,”
J. Speech Lang. Hear. Res.
53
,
1220
1226
.
38.
Story
,
B. H.
(
2002
). “
An overview of the physiology, physics and modeling of the sound source for vowels
,”
Acoust. Sci. Technol.
23
(
4
),
195
206
.
39.
Story
,
B. H.
(
2005
). “
A parametric model of the vocal tract area function for vowel and consonant simulation
,”
J. Acoust. Soc. Am.
117
(
5
),
3231
3254
.
40.
Story
,
B. H.
, and
Titze
,
I. R.
(
1995
). “
Voice simulation with a body-cover model of the vocal folds
,”
J. Acoust. Soc. Am.
97
(
2
),
1249
1260
.
41.
Takemoto
,
H.
,
Honda
,
K.
,
Masaki
,
S.
,
Shimada
,
Y.
, and
Fujimoto
,
I.
(
2006
). “
Measurement of temporal changes in vocal tract area function from 3D CINE-MRI data
,”
J. Acoust. Soc. Am.
119
(
2
),
1037
1049
.
42.
Titze
,
I. R.
(
1989
). “
On the relation between subglottal pressure and fundamental frequency in phonation
,”
J. Acoustical Soc. America
85
(
2
),
901
906
.
43.
Titze
,
I.
, and
Alipour
,
F.
(
2006
).
The Myoelastic-Aerodynamic Theory of Phonation
(
National Center for Voice and Speech
,
Iowa City, IA
).
44.
Titze
,
I. R.
, and
Hunter
,
E. J.
(
2004
). “
Normal vibration frequencies of the vocal ligament
,”
J. Acoust. Soc. Am.
115
(
5
),
2264
2269
.
45.
Titze
,
I. R.
, and
Hunter
,
E. J.
(
2007
). “
A two-dimensional biomechanical model of vocal fold posturing
,”
J. Acoust. Soc. Am.
121
(
4
),
2254
2260
.
46.
Titze
,
I. R.
, and
Story
,
B. H.
(
2002
). “
Rules for controlling low-dimensional vocal fold models with muscle activation
,”
J. Acoust. Soc. Am.
112
(
3
),
1064
1076
.
47.
Vojtech
,
J. M.
,
Segina
,
R. K.
,
Buckley
,
D. P.
,
Kolin
,
K. R.
,
Tardif
,
M. C.
,
Noordzij
,
J. P.
, and
Stepp
,
C. E.
(
2019
). “
Refining algorithmic estimation of relative fundamental frequency: Accounting for sample characteristics and fundamental frequency estimation method
,”
J. Acoust. Soc. Am.
146
(
5
),
3184
3202
.
48.
Watson
,
B. C.
(
1998
). “
Fundamental frequency during phonetically governed devoicing in normal young and aged speakers
,”
J. Acoust. Soc. Am.
103
(
6
),
3642
3647
.
49.
Weibel
,
E. R.
,
Cournand
,
A. F.
, and
Richards
,
D. W.
(
1963
).
Morphometry of the Human Lung
(
Springer
,
Berlin
).
50.
Wong
,
D.
,
Ito
,
M. R.
,
Cox
,
N. B.
, and
Titze
,
I. R.
(
1991
). “
Observation of perturbations in a lumped-element model of the vocal folds with application to some pathological cases
,”
J. Acoust. Soc. Am.
89
(
1
),
383
394
.
51.
Zanartu
,
M.
(
2006
). “
Influence of acoustic loading on the flowinduced oscillations of single mass models of the human larynx
,” Master's thesis,
Purdue University
, West Lafayette, IN.
52.
Zañartu
,
M.
,
Galindo
,
G. E.
,
Erath
,
B. D.
,
Peterson
,
S. D.
,
Wodicka
,
G. R.
, and
Hillman
,
R. E.
(
2014
). “
Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction
,”
J. Acoust. Soc. Am.
136
(
6
),
3262
3271
.
53.
Zhang
,
K.
,
Siegmund
,
T.
, and
Chan
,
R. W.
(
2006
). “
A constitutive model of the human vocal fold cover for fundamental frequency regulation
,”
J. Acoust. Soc. Am.
119
(
2
),
1050
1062
.
You do not currently have access to this content.