We present an effective thermoviscous theory of acoustofluidics including pressure acoustics, thermoviscous boundary layers, and streaming for fluids embedded in elastic cavities. By including thermal fields, we thus extend the effective viscous theory by Bach and Bruus [J. Acoust. Soc. Am. 144, 766 (2018)]. The acoustic temperature field and the thermoviscous boundary layers are incorporated analytically as effective boundary conditions and time-averaged body forces on the thermoacoustic bulk fields. Because it avoids resolving the thin boundary layers, the effective model allows for numerical simulation of both thermoviscous acoustic and time-averaged fields in three-dimensional models of acoustofluidic systems. We show how the acoustic streaming depends strongly on steady and oscillating thermal fields through the temperature dependency of the material parameters, in particular the viscosity and the compressibility, affecting both the boundary conditions and spawning additional body forces in the bulk. We also show how even small steady temperature gradients (1K/mm) induce gradients in compressibility and density that may result in very high streaming velocities (1mm/s) for moderate acoustic energy densities (100J/m3).

1.
A. A.
Doinikov
, “
Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. I. General formula
,”
J. Acoust. Soc. Am.
101
(
2
),
713
721
(
1997
).
2.
S. D.
Danilov
and
M. A.
Mironov
, “
Mean force on a small sphere in a sound field in a viscous fluid
,”
J. Acoust. Soc. Am.
107
(
1
),
143
153
(
2000
).
3.
J. T.
Karlsen
and
H.
Bruus
, “
Forces acting on a small particle in an acoustical field in a thermoviscous fluid
,”
Phys. Rev. E
92
,
043010
(
2015
).
4.
A. Y.
Rednikov
and
S. S.
Sadhal
, “
Acoustic/steady streaming from a motionless boundary and related phenomena: Generalized treatment of the inner streaming and examples
,”
J. Fluid. Mech.
667
,
426
462
(
2011
).
5.
P. B.
Muller
and
H.
Bruus
, “
Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels
,”
Phys. Rev. E
90
(
4
),
043016
(
2014
).
6.
J. T.
Karlsen
,
P.
Augustsson
, and
H.
Bruus
, “
Acoustic force density acting on inhomogeneous fluids in acoustic fields
,”
Phys. Rev. Lett.
117
,
114504
(
2016
).
7.
P.
Augustsson
,
J. T.
Karlsen
,
H.-W.
Su
,
H.
Bruus
, and
J.
Voldman
, “
Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping
,”
Nat. Commun.
7
,
11556
(
2016
).
8.
J. T.
Karlsen
and
H.
Bruus
, “
Acoustic tweezing and patterning of concentration fields in microfluidics
,”
Phys. Rev. Appl.
7
,
034017
(
2017
).
9.
J. T.
Karlsen
,
W.
Qiu
,
P.
Augustsson
, and
H.
Bruus
, “
Acoustic streaming and its suppression in inhomogeneous fluids
,”
Phys. Rev. Lett.
120
(
5
),
054501
(
2018
).
10.
W.
Qiu
,
J. T.
Karlsen
,
H.
Bruus
, and
P.
Augustsson
, “
Experimental characterization of acoustic streaming in gradients of density and compressibility
,”
Phys. Rev. Appl
11
(
2
),
024018
(
2019
).
11.
J. S.
Bach
and
H.
Bruus
, “
Theory of pressure acoustics with viscous boundary layers and streaming in curved elastic cavities
,”
J. Acoust. Soc. Am.
144
,
766
784
(
2018
).
12.
N. R.
Skov
,
J. S.
Bach
,
B. G.
Winckelmann
, and
H.
Bruus
, “
3D modeling of acoustofluidics in a liquid-filled cavity including streaming, viscous boundary layers, surrounding solids, and a piezoelectric transducer
,”
AIMS Math.
4
,
99
111
(
2019
).
13.
N. R.
Skov
,
P.
Sehgal
,
B. J.
Kirby
, and
H.
Bruus
, “
Three-dimensional numerical modeling of surface-acoustic-wave devices: Acoustophoresis of micro- and nanoparticles including streaming
,”
Phys. Rev. Appl.
12
,
044028
(
2019
).
14.
J. S.
Bach
and
H.
Bruus
, “
Bulk-driven acoustic streaming at resonance in closed microcavities
,”
Phys. Rev. E
100
,
023104
(
2019
).
15.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity. Course of Theoretical Physics
, 3rd ed. (
Pergamon Press
,
Oxford, UK
,
1986
),
Vol. 7
.
16.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
, 2nd ed. (
Pergamon Press
,
Oxford, UK
,
1993
), Vol.
6
.
17.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics, Part 1
, 3rd ed. (
Butterworth-Heinemann
,
Oxford, UK
,
1980
), Vol.
5
.
18.
A.
Riaud
,
M.
Baudoin
,
O.
Bou Matar
,
J.-L.
Thomas
, and
P.
Brunet
, “
On the influence of viscosity and caustics on acoustic streaming in sessile droplets: An experimental and a numerical study with a cost-effective method
,”
J. Fluid Mech.
821
,
384
420
(
2017
).
19.
COMSOL, “
COMSOL Multiphysics 5.6,”
http://www.comsol.com (30 March 2021).
20.
M. W. H.
Ley
and
H.
Bruus
, “
Three-dimensional numerical modeling of acoustic trapping in glass capillaries
,”
Phys. Rev. Appl.
8
,
024020
(
2017
).
21.
See supplementary material at https://www.scitation.org/doi/suppl/10.1121/10.0005005 for details on the material parameters and on the COMSOL implementation of geometry, mesh, PML, and effective and symmetry boundary conditions.
22.
M.
Antfolk
,
P. B.
Muller
,
P.
Augustsson
,
H.
Bruus
, and
T.
Laurell
, “
Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis
,”
Lab Chip
14
,
2791
2799
(
2014
).
23.
P.
Mishra
,
M.
Hill
, and
P.
Glynne-Jones
, “
Deformation of red blood cells using acoustic radiation forces
,”
Biomicrofluidics
8
(
3
),
034109
(
2014
).
24.
I.
Gralinski
,
S.
Raymond
,
T.
Alan
, and
A.
Neild
, “
Continuous flow ultrasonic particle trapping in a glass capillary
,”
J. Appl. Phys.
115
(
5
),
054505
(
2014
).
25.
B.
Hammarström
,
T.
Laurell
, and
J.
Nilsson
, “
Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems
,”
Lab Chip
12
,
4296
4304
(
2012
).
26.
J.
Lei
,
P.
Glynne-Jones
, and
M.
Hill
, “
Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices
,”
Lab Chip
13
(
11
),
2133
2143
(
2013
).
27.
H.
Lei
,
D.
Henry
, and
H.
BenHadid
, “
Acoustic force model for the fluid flow under standing waves
,”
Appl. Acoust.
72
(
10
),
754
759
(
2011
).
28.
G.
Werr
,
Z.
Khaji
,
M.
Ohlin
,
M.
Andersson
,
L.
Klintberg
,
S. S.
Searle
,
K.
Hjort
, and
M.
Tenje
, “
Integrated thin film resistive sensors for in situ temperature measurements in an acoustic trap
,”
J. Micromech. Microeng.
29
(
9
),
095003
(
2019
).
29.
F.
Collino
and
P. B.
Monk
, “
Optimizing the perfectly matched layer
,”
Comput. Methods. Appl. Mech. Eng.
164
(
1-2
),
157
171
(
1998
).

Supplementary Material

You do not currently have access to this content.