A numerical model of full-scale N-wave sonic boom propagation through turbulence is described based on the nonlinear Khokhlov–Zabolotskaya–Kuznetzov (KZK) propagation equation and the most advanced turbulence model used in atmospheric acoustics. This paper presents the first quantitative evaluation of a KZK-based model using data from the recent Sonic Booms in Atmospheric Turbulence measurement campaigns, which produced one of the most extensive databases of full-scale distorted N-waves and concurrent atmospheric parameters. Simulated and measured distributions of the perceived level (PL) metric, which has been used to predict public annoyance due to sonic booms, are compared. For most of the conditions considered, the present model's predictions of the PL variances agree with the measurement to within normal uncertainty, while about half of the mean value predictions agree. The approximate PL distribution measured for high turbulence conditions falls within about 2 dB of the simulated distribution for nearly all probabilities. These favorable results suggest that the KZK-based model is sufficiently accurate for approximating the N-wave PL distribution, and the model may therefore be useful for predicting public reaction to sonic booms in turbulent conditions.

1.
Averiyanov
,
M.
,
Blanc-Benon
,
P.
,
Cleveland
,
R. O.
, and
Khokhlova
,
V.
(
2011
). “
Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media
,”
J. Acoust. Soc. Am.
129
,
1760
1772
.
2.
Aver'yanov
,
M. V.
,
Khokhlova
,
V. A.
,
Sapozhnikov
,
O. A.
,
Blanc-Benon
,
P.
, and
Cleveland
,
R. O.
(
2006
). “
Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media
,”
Acoust. Phys.
52
,
623
632
.
3.
Baudoin
,
M.
,
Coulouvrat
,
F.
,
Thomas
,
J. L.
,
Atchley
,
A. A.
,
Sparrow
,
V. W.
, and
Keolian
,
R. M.
(
2006
). “
Absorption of sonic boom by clouds
,”
AIP Conf. Proc.
838
,
619
-
622
.
4.
Blanc-Benon
,
P.
,
Lipkens
,
B.
,
Dallois
,
L.
,
Hamilton
,
M. F.
, and
Blackstock
,
D. T.
(
2002
). “
Propagation of finite amplitude sound through turbulence: Modeling with geometrical acoustics and the parabolic approximation
,”
J. Acoust. Soc. Am.
111
,
487
498
.
5.
Boos
,
D. D.
, and
Brownie
,
C.
(
2004
). “
Comparing variances and other measures of dispersion
,”
Stat. Sci.
19
,
571
578
.
6.
Bradley
,
K.
,
Hobbs
,
C.
,
Wilmer
,
C.
,
Sparrow
,
V.
,
Stout
,
T.
,
Morgenstern
,
J.
,
Cowart
,
R.
,
Collmar
,
M.
,
Underwood
,
K.
,
Maglieri
,
D.
,
Shen
,
H.
, and
Blanc-Benon
,
P.
(
2020
). “
Sonic Booms in Atmospheric Turbulence (SONICBAT): The influence of turbulence on shaped sonic booms
,”
NASA Contractor Report 20200002482
(
NASA Armstrong Flight Research Center
,
Edwards, CA
).
7.
Chevret
,
P.
,
Blanc‐Benon
,
P.
, and
Juvé
,
D.
(
1996
). “
A numerical model for sound propagation through a turbulent atmosphere near the ground
,”
J. Acoust. Soc. Am.
100
,
3587
3599
.
8.
Cleveland
,
R. O.
,
Hamilton
,
M. F.
, and
Blackstock
,
D. T.
(
1996
). “
Time‐domain modeling of finite‐amplitude sound in relaxing fluids
,”
J. Acoust. Soc. Am.
99
,
3312
3318
.
9.
Cliatt
,
L. J.
,
Haering
,
E. A.
, Jr.
,
Arnac
,
S. R.
, and
Hill
,
M. A.
(
2016
). “
Lateral cutoff analysis and results from NASA's farfield investigation of no-boom threshold
,”
Technical Report
(
NASA Armstrong Flight Research Center
,
Edwards, CA
).
10.
Dagrau
,
F.
,
Rénier
,
M.
,
Marchiano
,
R.
, and
Coulouvrat
,
F.
(
2011
). “
Acoustic shock wave propagation in a heterogeneous medium: A numerical simulation beyond the parabolic approximation
,”
J. Acoust. Soc. Am.
130
,
20
32
.
11.
Haering
,
E.
,
Cliatt
,
L.
,
Bunce
,
T.
,
Gabrielson
,
T.
,
Sparrow
,
V.
, and
Locey
,
L.
(
2008
). “
Initial results from the variable intensity sonic boom propagation database
,” in
Proceedings of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference)
, May 5–7, Vancouver, Canada, AIAA 2008-3034.
12.
Hamilton
,
M. F.
, and
Blackstock
,
D. T.
(
1998
).
Nonlinear Acoustics
(
Academic
,
San Diego, CA)
.
13.
Hobbs
,
C.
, and
Page
,
J.
(
2011
). “
PCBoom model prediction comparisons with flight test measurement data
,” in
Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
, January 4–7, Orlando, FL, AIAA 2011-1277.
14.
Højstrup
,
J.
(
1982
). “
Velocity spectra in the unstable planetary boundary layer
,”
J. Atmos. Sci.
39
,
2239
2248
.
15.
Johnson
,
R.
, and
Wichern
,
D.
(
2013
).
Applied Multivariate Statistical Analysis
(
Pearson Education, Inc
.,
London, UK
).
16.
Kanamori
,
M.
,
Takahashi
,
T.
,
Naka
,
Y.
,
Makino
,
Y.
,
Takahashi
,
H.
, and
Ishikawa
,
H.
(
2017
). “
Numerical evaluation of effect of atmospheric turbulence on sonic boom observed in D-SEND#2 flight test
,”
Proceedings of the 55th AIAA Aerospace Sciences Meeting
, January 9–13, Grapevine, TX, AIAA 2017-0278.
17.
Karweit
,
M.
,
Blanc‐Benon
,
P.
,
Juvé
,
D.
, and
Comte‐Bellot
,
G.
(
1991
). “
Simulation of the propagation of an acoustic wave through a turbulent velocity field: A study of phase variance
,”
J. Acoust. Soc. Am.
89
,
52
62
.
18.
Leatherwood
,
J. D.
,
Sullivan
,
B. M.
,
Shepherd
,
K. P.
,
McCurdy
,
D. A.
, and
Brown
,
S. A.
(
2002
). “
Summary of recent NASA studies of human response to sonic booms
,”
J. Acoust. Soc. Am.
111
,
586
598
.
19.
Lee
,
Y.-S.
(
1993
). “
Numerical solution of the KZK equation for pulsed finite amplitude sound beams in thermoviscous fluids
,” Ph.D. dissertation,
University of Texas
,
Austin, TX
.
20.
Lee
,
Y. S.
, and
Hamilton
,
M. F.
(
1995
). “
Time‐domain modeling of pulsed finite‐amplitude sound beams
,”
J. Acoust. Soc. Am.
97
,
906
917
.
21.
Lim
,
T.-S.
, and
Loh
,
W.-Y.
(
1996
). “
A comparison of tests of equality of variances
,”
Comput. Stat. Data Anal.
22
,
287
301
.
22.
Locey
,
L. L.
(
2008
). “
Sonic boom postprocessing functions to simulate atmospheric turbulence effects
,” Ph.D. dissertation,
Pennsylvania State University
,
University Park, PA
).
23.
Luquet
,
D.
(
2016
). “
3D simulation of acoustical shock waves propagation through a turbulent atmosphere: Application to sonic boom
,” Ph.D. dissertation,
Université Pierre et Marie Curie-Paris VI
,
Paris, France
.
24.
Luquet
,
D.
,
Marchiano
,
R.
, and
Coulouvrat
,
F.
(
2019
). “
Long range numerical simulation of acoustical shock waves in a 3D moving heterogeneous and absorbing medium
,”
J. Comput. Phys.
379
,
237
261
.
25.
Maglieri
,
D. J.
,
Bobbitt
,
P. J.
,
Plotkin
,
K. J.
,
Shepherd
,
K. P.
,
Coen
,
P. G.
, and
Richwine
,
D. M.
(
2014
). “Sonic boom: Six decades of research,” NASA/SP-2014-622 (NASA Langley Research Center, Hampton, VA).
26.
Ostashev
,
V. E.
, and
Wilson
,
D. K.
(
2015
).
Acoustics in Moving Inhomogeneous Media
(
CRC
,
Boca Raton, FL
), pp.
193
-
205
.
27.
Pao
,
Y. H.
(
1965
). “
Structure of turbulent velocity and scalar fields at large wavenumbers
,”
Phys. Fluids
8
,
1063
1075
.
28.
Pao
,
Y. H.
(
1968
). “
Transfer of turbulent energy and scalar quantities at large wavenumbers
,”
Phys. Fluids
11
,
1371
1372
.
29.
Shepherd
,
K. P.
, and
Sullivan
,
B. M.
(
1991
). “
A loudness calculation procedure applied to shaped sonic booms
,”
NASA Technical Paper 3134
(
NASA Langley Research Center
,
Hampton, VA
).
30.
Sparrow
,
V. W.
, and
Raspet
,
R.
(
1991
). “
A numerical method for general finite amplitude wave propagation in two dimensions and its application to spark pulses
,”
J. Acoust. Soc. Am.
90
,
2683
2691
.
31.
Stevens
,
S.
(
1972
). “
Perceived level of noise by Mark VII and decibels (E)
,”
J. Acoust. Soc. Am.
51
,
575
601
.
32.
Stout
,
T. A.
(
2018
). “
Simulation of N-wave and shaped supersonic signature turbulent variations
,” Ph.D. dissertation,
Pennsylvania State University
,
University Park, PA
.
33.
Stout
,
T. A.
, and
Sparrow
,
V. W.
(
2018
). “
Time-domain spline interpolation in a simulation of N-wave propagation through turbulence
,”
J. Acoust. Soc. Am.
144
,
EL229
EL235
.
34.
Wert
,
K.
,
Blanc-Benon
,
P.
, and
Juve
,
D.
(
1998
). “
Effect of turbulence scale resolution on numerical simulation of atmospheric sound propagation
,”
Proceedings of the 4th AIAA/CEAS Aeroacoustics Conference
, June 2–4, Toulouse, France, AIAA 1998-2245.
35.
Wilson
,
D. K.
(
2000
). “
A turbulence spectral model for sound propagation in the atmosphere that incorporates shear and buoyancy forcings
,”
J. Acoust. Soc. Am.
108
,
2021
2038
.
You do not currently have access to this content.