The acoustic behavior of individual slits within microslit absorbers (MSAs) is investigated to explore the influence of porosity, edge geometry, slit position, and plate thickness. MSAs are plates with arrays of slit-shaped perforations, with the height of the order of the acoustic viscous boundary layer thickness, for optimized viscous dissipation. Due to hydrodynamic interaction, each slit behaves as confined in a rectangular channel. The flow within the slit is assumed to be incompressible. The viscous dissipation and the inertia are quantified by the resistive and the inertial end-corrections. These are estimated by using analytical results and numerical solutions of the linearized Navier–Stokes equations. Expressions for the end-corrections are provided as functions of the ratio of the slit height to viscous boundary layer thickness (shear number) and of the porosity. The inertial end-correction is sensitive to the far-field behavior of the flow and for low porosities strongly depends on the porosity, unlike for circular perforations. The resistive end-correction is dominated by the edge geometry of the perforation. The relative position of the slit with respect to the wall of the channel is important for distances to the wall on the order of the slit height. The plate thickness does not have a significant effect on the end-corrections.

1.
Berggren
,
M.
,
Bernland
,
A.
, and
Noreland
,
D.
(
2018
). “
Acoustic boundary layers as boundary conditions
,”
J. Comput. Phys.
371
,
633
650
.
2.
Billard
,
R.
,
Tissot
,
G.
,
Gabard
,
G.
, and
Versaevel
,
M.
(
2021
). “
Numerical simulations of perforated plate liners: Analysis of the visco-thermal dissipation mechanisms
,”
J. Acoust. Soc. Am.
149
(
1
),
16
27
.
3.
Cobo
,
P.
,
de la Colina
,
C.
, and
Simón
,
F.
(
2020
). “
On the modelling of microslit panel absorbers
,”
Appl. Acoust.
159
,
107118
.
4.
COMSOL
(
2019
). “
COMSOL Multiphysics (version 5.5)
” (COMSOL AB, Stockholm, Sweden).
5.
Fok
,
V.
(
1941
). “
Teoreticheskoe issledovanie provodimosti kruglogo otverstiya v peregorodke, postavlennoi poperek truby” (“Theoretical study of the conductance of a circular hole in a partition across a tube
”),
Sov. Phys. Doklady
31
(
9
),
875
882
.
6.
Glantz
,
S.
, and
Slinker
,
B.
(
2001
).
Primer of Applied Regression and Analysis of Variance
(
McGraw-Hill
,
New York
).
7.
Henrici
,
P.
(
1974
).
Applied and Computational Complex Analysis
,
Vol. I
(
Wiley
,
New York
).
8.
Hirschberg
,
L.
,
Schuller
,
T.
,
Collinet
,
J.
,
Schram
,
C.
, and
Hirschberg
,
A.
(
2018
). “
Analytical model for the prediction of pulsations in a cold-gas scale-model of a solid rocket motor
,”
J. Sound Vib.
419
,
452
468
.
9.
Ingard
,
U.
(
1953
). “
On the theory and design of acoustic resonators
,”
J. Acoust. Soc. Am.
25
(
6
),
1037
1061
.
10.
Jaouen
,
L.
, and
Chevillotte
,
F.
(
2018
). “
Length correction of 2D discontinuities or perforations at large wavelengths and for linear acoustics
,”
Acta Acust. United Acust.
104
(
2
),
243
250
.
11.
Kergomard
,
J.
, and
Garcia
,
A.
(
1987
). “
Simple discontinuities in acoustic waveguides at low frequencies: Critical analysis and formulae
,”
J. Sound Vib.
114
(
3
),
465
479
.
12.
Kristiansen
,
U. R.
, and
Vigran
,
T. E.
(
1994
). “
On the design of resonant absorbers using a slotted plate
,”
Appl. Acoust.
43
(
1
),
39
48
.
13.
Landau
,
L.
, and
Lifshitz
,
E.
(
1987
).
Fluid Mechanics
, 2nd ed. (
USSR Academy of Sciences
,
Moscow
).
14.
Lesser
,
M.
, and
Lewis
,
J.
(
1972
). “
Applications of matched asymptotic expansion methods to acoustics. II. The open-ended duct
,”
J. Acoust. Soc. Am.
52
(
5B
),
1406
1410
.
15.
Lighthill
,
J.
(
2001
).
Waves in Fluids
(
Cambridge University
,
Cambridge, UK
).
16.
Maa
,
D.-Y.
(
1998
). “
Potential of microperforated panel absorber
,”
J. Acoust. Soc. Am.
104
(
5
),
2861
2866
.
17.
Maa
,
D.-Y.
(
2000
). “
Theory of microslit absorbers
,”
Acta Acust.
25
(
6
),
481
485
.
18.
Morse
,
P. M.
, and
Ingard
,
K. U.
(
1986
).
Theoretical Acoustics
(
Princeton University
,
Princeton, NJ
).
19.
Naderyan
,
V.
,
Raspet
,
R.
,
Hickey
,
C. J.
, and
Mohammadi
,
M.
(
2019
). “
Acoustic end corrections for micro-perforated plates
,”
J. Acoust. Soc. Am.
146
(
4
),
EL399
EL404
.
20.
Randeberg
,
R.
(
2002
). “
Adjustable slitted panel absorber
,”
Acta Acust. United Acust.
88
(
4
),
507
512
.
21.
Rienstra
,
S. W.
, and
Hirschberg
,
A.
(
2004
).
An Introduction to Acoustics
(
Eindhoven University of Technology
,
Eindhoven, Netherlands
).
22.
Ruiz
,
H.
,
Claeys
,
C.
,
Deckers
,
E.
, and
Desmet
,
W.
(
2016
). “
Numerical and experimental study of the effect of microslits on the normal absorption of structural metamaterials
,”
Mech. Syst. Signal Process.
70
,
904
918
.
23.
Ruiz
,
H.
,
Cobo
,
P.
, and
Jacobsen
,
F.
(
2011
). “
Optimization of multiple-layer microperforated panels by simulated annealing
,”
Appl. Acoust.
72
(
10
),
772
776
.
24.
Temiz
,
M. A.
,
Lopez Arteaga
,
I.
,
Efraimsson
,
G.
,
Åbom
,
M.
, and
Hirschberg
,
A.
(
2015
). “
The influence of edge geometry on end-correction coefficients in micro perforated plates
,”
J. Acoust. Soc. Am.
138
(
6
),
3668
3677
.
25.
Vigran
,
T.
(
2014
). “
The acoustic properties of panels with rectangular apertures
,”
J. Acoust. Soc. Am.
135
(
5
),
2777
2784
.
26.
Zieliński
,
T. G.
,
Chevillotte
,
F.
, and
Deckers
,
E.
(
2019
). “
Sound absorption of plates with micro-slits backed with air cavities: Analytical estimations, numerical calculations and experimental validations
,”
Appl. Acoust.
146
,
261
279
.

Supplementary Material

You do not currently have access to this content.