With the advance of additive manufacturing, many researchers are increasingly interested in planar acoustic lenses that are not only easier to fabricate than typical convex/concave lenses, but also have excellent imaging performance. However, the planar acoustic lenses reported so far cannot work for a short-duration pulse used in conventional imaging systems due to their inherent dispersive characteristics. This study addresses the challenge by devising a transient topology optimization formulation to design a planar acoustic lens that works effectively for a short-duration pulse. A planar lens consists of two materials where optimal combination and distribution are obtained with a crisp interface via the level-set method. Design is based on the transient acoustic responses, which are calculated from a time-dependent acoustic model solved by the Newmark method. The proposed method uses the area-fraction approach to compute the acoustic properties of a cut element by the interface. A localizing time-window function is introduced so that acoustic energy can be focused within the desired time range as much as possible. We obtain optimum design solutions designed with the proposed method and verify its effectiveness through the numerical investigations.

1.
Bathe
,
K. J.
(
1996
).
Finite Element Procedures
(
Prentice-Hall
,
Englewood Cliffs, NJ
).
2.
Bruns
,
T. E.
(
2005
). “
A reevaluation of the SIMP method with filtering and an alternative formulation for solid–void topology optimization
,”
Struct. Multidiscip. Optim.
30
,
428
436
.
3.
Calvo
,
D. C.
,
Thangawng
,
A. L.
,
Nicholas
,
M.
, and
Layman
,
C. N.
(
2015
). “
Thin Fresnel zone plate lenses for focusing underwater sound
,”
Appl. Phys. Lett.
107
,
014103
.
4.
Che
,
S.
,
Guduru
,
P. R.
,
Nurmikko
,
A. V.
, and
Maris
,
H. J.
(
2015
). “
A scanning acoustic microscope based on picosecond ultrasonics
,”
Ultrasonics
56
,
153
159
.
5.
Chen
,
J.
,
Rao
,
J.
,
Lisevych
,
D.
, and
Fan
,
Z.
(
2019
). “
Broadband ultrasonic focusing in water with an ultra-compact metasurface lens
,”
Appl. Phys. Lett.
114
,
104101
.
6.
COMSOL
(
2014
).
Introduction to COMSOL Multiphysics 5.3
(
COMSOL AB
,
Stockholm, Sweden
).
7.
Dahl
,
J.
,
Jensen
,
J. S.
, and
Sigmund
,
O.
(
2008
). “
Topology optimization for transient wave propagation problems in one dimension
,”
Struct. Multidiscip. Optim.
36
,
585
595
.
8.
Dilgen
,
C. B.
, and
Aage
,
N.
(
2020
). “
Generalized shape optimization of transient vibroacoustic problems using cut elements
,”
Int. J. Numer. Methods Eng.
122
(
6
),
1578
1601
.
9.
Dunning
,
P. D.
, and
Kim
,
H. A.
(
2015
). “
Introducing the sequential linear programming level-set method for topology optimization
,”
Struct. Multidiscip. Optim.
51
,
631
643
.
10.
Hyun
,
J.
,
Cho
,
W.-H.
,
Park
,
C.
,
Chang
,
J.-H.
, and
Kim
,
M.
(
2020
). “
Achromatic acoustic gradient-index phononic crystal lens for broadband focusing
,”
Appl. Phys. Lett.
116
,
234102
.
11.
Hyun
,
J.
,
Kim
,
Y. T.
,
Doh
,
I.
,
Ahn
,
B.
,
Baik
,
K.
, and
Kim
,
S.-H.
(
2018
). “
Realization of an ultrathin acoustic lens for subwavelength focusing in the megasonic range
,”
Sci. Rep.
8
,
9131
.
12.
Kambampati
,
S.
,
Du
,
Z.
,
Chung
,
H.
,
Kim
,
H. A.
,
Jauregui
,
C.
,
Townsend
,
S.
,
Picelli
,
R.
,
Xhou
,
X. Y.
, and
Hedges
,
L.
(
2018
). “
OpenLSTO: Open-source software for level set topology optimization
,” in
Proceedings of the 2018 Multidisciplinary Analysis and Optimization Conference
, June 25–29, Atlanta, GA (
American Institute of Aeronautics and Astronautics
,
Reston, VA
).
13.
Kambampati
,
S.
,
Jauregui
,
C.
,
Museth
,
K.
, and
Kim
,
H. A.
(
2020
). “
Large-scale level set topology optimization for elasticity and heat conduction
,”
Struct. Multidiscip. Optim.
61
,
19
38
.
14.
Khuri-Yakub
,
B. T.
(
1993
). “
Scanning acoustic microscopy
,”
Ultrasonics
31
,
361
372
.
15.
Labréche
,
A.
,
Beauséjour
,
A.
,
Castonguay
,
M.
, and
Cheeke
,
J. D. N.
(
1985
). “
Scanning acoustic microscopy using PVDF concave lenses
,”
Electron. Lett.
21
,
990
.
16.
Lee
,
H. J.
,
Lee
,
J.-R.
,
Moon
,
S. H.
,
Je
,
T.-J.
,
Jeon
,
E.
,
Kim
,
K.
, and
Kim
,
Y. Y.
(
2017
). “
Off-centered double-slit metamaterial for elastic wave polarization anomaly
,”
Sci. Rep.
7
,
15378
.
17.
Lee
,
J. W.
, and
Kim
,
Y. Y.
(
2009
). “
Topology optimization of muffler internal partitions for improving acoustical attenuation performance
,”
Int. J. Numer. Methods Eng.
80
,
455
477
.
18.
Lemons
,
R. A.
, and
Quate
,
C. F.
(
1974
). “
Acoustic microscope—scanning version
,”
Appl. Phys. Lett.
24
,
163
165
.
19.
Lu
,
L.
,
Yamamoto
,
T.
,
Otomori
,
M.
,
Yamada
,
T.
,
Izui
,
K.
, and
Nishiwaki
,
S.
(
2013
). “
Topology optimization of an acoustic metamaterial with negative bulk modulus using local resonance
,”
Finite Elem. Anal. Des.
72
,
1
12
.
20.
Maznev
,
A. A.
, and
Wright
,
O. B.
(
2017
). “
Upholding the diffraction limit in the focusing of light and sound
,”
Wave Motion
68
,
182
189
.
21.
Oki
,
E.
(
2012
). “
GLPK (GNU linear programming kit)
,” in
Linear Programming and Algorithms for Communication Networks
(
CRC
,
Boca Raton, FL
), pp.
25
29
.
22.
Parker
,
N. G.
,
Nelson
,
P. V.
, and
Povey
,
M. J. W.
(
2010
). “
A versatile scanning acoustic platform
,”
Meas. Sci. Technol.
21
,
045901
.
23.
Pérez-López
,
S.
,
Tarrazó-Serrano
,
D.
,
Dolmatov
,
D. O.
,
Rubio
,
C.
, and
Candelas
,
P.
(
2020
). “
Transient analysis of Fresnel zone plates for ultrasound focusing applications
,”
Sensors
20
,
6824
.
24.
Picelli
,
R.
,
Townsend
,
S.
,
Brampton
,
C.
,
Norato
,
J.
, and
Kim
,
H. A.
(
2018
). “
Stress-based shape and topology optimization with the level set method
,”
Comput. Methods Appl. Mech. Eng.
329
,
1
23
.
25.
Reddy
,
J. N.
(
2007
).
An Introduction to Continuum Mechanics
(
Cambridge University
,
Cambridge, UK
).
26.
Sethian
,
J. A.
(
1999
).
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
(
Cambridge University
,
Cambridge, UK
).
27.
Sethian
,
J. A.
, and
Vladimirsky
,
A.
(
2000
). “
Fast methods for the Eikonal and related Hamilton- Jacobi equations on unstructured meshes
,”
Proc. Natl. Acad. Sci. U.S.A.
97
,
5699
5703
.
28.
Shen
,
Y.-X.
,
Peng
,
Y.-G.
,
Cai
,
F.
,
Huang
,
K.
,
Zhao
,
D.-G.
,
Qiu
,
C.-W.
,
Zheng
,
H.
, and
Zhu
,
X. F.
(
2019
). “
Ultrasonic super-oscillation wave-packets with an acoustic meta-lens
,”
Nat. Commun.
10
,
3411
.
29.
Tarrazó-Serrano
,
D.
,
Castiñeira-Ibáñez
,
S.
,
Minin
,
O.
,
Candelas
,
P.
,
Rubio
,
C.
, and
Minin
,
I.
(
2019
). “
Design of acoustical Bessel-like beam formation by a pupil masked Soret zone plate lens
,”
Sensor
19
,
378
.
30.
Tran
,
Q. D.
,
Jang
,
G.-W.
,
Kwon
,
H.-S.
, and
Cho
,
W.-H.
(
2017
). “
Shape and topology optimization of acoustic lens system using phase field method
,”
Struct. Multidiscip. Optim.
56
,
713
729
.
31.
Xia
,
W.
,
Piras
,
D.
,
van Hespen
,
J. C. G.
,
Steenbergen
,
W.
, and
Manohar
,
S.
(
2013
). “
A new acoustic lens material for large area detectors in photoacoustic breast tomography
,”
Photoacoustics
1
,
9
18
.
32.
Xie
,
Y.
,
Wang
,
W.
,
Chen
,
H.
,
Konneker
,
A.
,
Popa
,
B.-I.
, and
Cummer
,
S. A.
(
2014
). “
Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface
,”
Nat. Commun.
5
,
5553
.
33.
Yang
,
S.
,
Qin
,
W.
,
Guo
,
H.
,
Jin
,
T.
,
Huang
,
N.
,
He
,
M.
, and
Xi
,
L.
(
2017
). “
Design and evaluation of a compound acoustic lens for photoacoustic computed tomography
,”
Biomed. Opt. Express
8
,
2756
2765
.
34.
Yokosawa
,
K.
(
1996
). “
A 120-MHz ultrasound probe for tissue imaging
,”
Ultrason. Imaging
18
,
231
239
.
35.
Yoon
,
G. H.
,
Choi
,
H.
, and
Hur
,
S.
(
2018
). “
Multiphysics topology optimization for piezoelectric acoustic focuser
,”
Comput. Methods Appl. Mech. Eng.
332
,
600
623
.
36.
Yu
,
Z.
, and
Boseck
,
S.
(
1995
). “
Scanning acoustic microscopy and its applications to material characterization
,”
Rev. Mod. Phys.
67
,
863
891
.
You do not currently have access to this content.